A6 Automatic Transfic:

Features……
Internal Accessoriesw...

Applied Standards .. A6-14 Contact Time Charts .. Ab Circuit Diagrams..... External Sizes

Automatic Transfer Switches 100~200A

It is combines new IT technologies to design and produce the optimal solution for
any customer environment. This premium offering is complete with user-centered protection to satisfy a wide range of customer needs and ensure maximum safety.

Saving Power

- Low operating current instantaneous excitation system

Safety Design

- Contact is semi-permanent by mold construction in anti-vibration zones.

2-Coil System

- Convenient operation with 2-Coil is adopted.

Miniature Structure

- It can be built into portable generators or UPS, and is ideal for single-phase load less than 200A

Certificate \& Approval

- IEC 60947-6/UL1008

Automatic Transfer Switches 100~3000A

Innovative convenience and ergonomics are adopted
It is also a premium product that delivers user-centric reliability while delivering the best solution for a wide range of customer environments with world-class reliability.

Certificate \& Approval

- It is a product applied with the accumulated switch design and application technologies, operating machine design technology and insulation design technology.
- It is a product with the largest short circuit capacity and applied with the international standards IEC60947-3 (Transfer Switching Equipmnet) and IEC60947-6-1 (Transfer Switching Equipment).
- It is an automatic transfer switch equipped with the breaking capacity and its reliability has improved (Obtained a shor circuit certificate through KERI Type Test).
- It has both-way breaking capacity.

It is possible to install a 1000 mm panel board for all types through an optimal reduction of exterior structure
-Standard type up to 73% less cosmetic. / Economic type up to 48% less external.

- It can be built inside the movable generator or UPS since it is in a miniature structure.
- It is possible to supply a stable power by composing a separate system.

The transparent terminal cover and insulation molding provides safety

- Transparent insulation cover for access terminals enhances insulation performance against ingress of foreign materia and improves operator safety.
- A sealed structure with fully molded insulation to maximize the safety of the operator and lifespan of the device. - Transparent terminal cover adoption makes it easy to identify terminal connections and makes it easy to work with terminal covers when carrying out a connection.
- It stressed harmony with the surrounding equipment with wired external structure.

It is easy to carry out maintenance and designed in a safe structure

- It is easy to attach/detach the insulation cover of the front part so that it is easy to identify the structural health of the breaking part and connecting terminal part
- It is easy to check the switching performance and main contact state through a simple, removable Arc Shute structure.
- The operational part is protected by a steel cover and the structural health of solenoid can be checked by a simple removable.
Each phase has been individually sealed for enhanced prevention and safety - Individual moldings and closures on each of the phase improve blocking performance and increase device lifespan - Short arc time and low contact consumption during opening and closing causes semi-permanent life,
-The open operation by means of separate breaking springs ensures consistent and reliable shutdown performance regardless of operating voltage

Improved safety for users

- The protection and breaking capacity of main points have been enhanced by the design of the trip system after the lines are inserted at the auxiliary contacts Improved safety for users.
- Excellent opening and closing function enables low-arcing arc production for longer product life.

Compact design for customers makes it convenient

- he volume sensitive shape user friendly image was inventoried and the whole curve was applied to create innovation with a simple, beautiful and progressive product image.
- Confidence is emphasized by the clean shape-clearing and well-cleaned adoption of the cable.
- Products in the panel are clear and arranged with clear color application.

World-Best ATS Technology achieved by constant researches and continuous technology development - We invite you to the world of premium electric
equipment ever, the finest products in the world.

Features
Saving power
位
1itte operating current
Safe Design
operational part is molded for a dust-proof so the
the contact part is semi-permanent
2-Coil Mode
It adopted a sin
ple operation mode using 2 coils
It Minature be bi
Low Cost
It is a miniature type
phase ith hess hhan
200 A (non-inductive)
Applied Standard
Applied Standard
IEC 6094--1/ / UL1008
mode with
Miniature ATS HS Types

1) Transfer time is operated a 0.3 Sec or less. Make sure a full operation is possible with an operation
command of 0.5 sec or more.
simultaneously, it may lead to coil bommand is don In case of an operation realay selecta a ufficient
capacity capacity that exceeds the operating current.

safety
Neutral Point Mode adde
Features
Full insulated feature
The breaking part is fully enclosed in ald structure
to completely prevent electrical accidents due to the to completely yrevent electicica accidentind due to the due to a physicicl contact or ortachment of dus
foreign substances when used for a long time. Safe Conduction
All phases are designed to have a certain contact
pressure which allows them to maintain a sate
 so the intensity of the over-current is high in case of a
short circuit. Sophisticated Design
Each phase is sully in
Each hhase is fully insulated dand is in an independent
1 -phase structure. According to to the convenience of users, the conduction parts of 3 -phase and 4 -phase can
becorbeined deepending on the capacity and the
number of phases. bee combined dep
number of phases.
One-coil Mode
It is a Compact Type where closing of commercial
power and reserved power is possibib with 1 closing
coil coil.
Safe Open Feature
By adoption unique-structured arc shute, the
oporeational cycle is ssemi-permanent because the arc
breakion

 Neutral Point Mode

 $\underset{\substack{\text { at } \\ \text { transer arre possib } \\ \text { ond }}}{ }$

Saving Power It is in an insta

power consumpantineous The exitation mode with very little by Cath device so the intensity of the over-current is
high is case of a short
ircuit. By adopoting a unique-structured arc shute, the oureational ccic is s.mi--
permanent because the arc brakeing time is short and permanent because the ara brea
the contact consummpion is litte
Various Products
There are various products with the rated voltage and
current up to $000 \mathrm{~V}, 100-3000 \mathrm{~A}$ and t hey are

Breaking Feature
regardless of the operal always be implemented Kepartutess of the operating voltage

*Note1) Switching Capacity: AC-33B:
Rated Load Switching Performance 1 Closing $1 \times \mathrm{le}$, Breaking $1 \times \mathrm{le}, \operatorname{Cos} \varnothing=0.8$
Note2) Trip: The switch in the circuit is opened to the neutral position (OFF) at Power A or B.

Economic Type ATS W, WP Types

Additiona lype A \leftrightarrow Pause \leftrightarrow
Features
Safe Desig
It provides a asfe operation by adopting a dust-proof mold structure at the breaking part. For both AC/DC
The operating circuit can use both $A C / D C$.
One Coil Instantaneous Excitation Mode
-It is a power saving structure with an instantaneous excitation mode in one coil.
-The voltage of operating coil is both AC110/220V ($※$ Refer to the instruction).
It is an instantaneus operation type where the operation
time cannot te adiusted. But, in case of WP type, a Neutral time cannot be adiusted. But, in case of WP type, a Neutral
position is added between A-power source and B-power

 connected to both A and B power sources
transfer operation.
ExX When transerring from A-powert B - -ower IEx] When transferring from A-power to 8 -power
(1) A O pening $\rightarrow 2$ Pause for $3-30$ seconds \rightarrow DA A pening
3Blosing
3BClosing
This tunction is to prevent a short-circuit of load part and power source part by transterining to the other power atter a
residuav voltagi e extinct it the exsising load is
the same as the motor lad that generates much residual voltage.
If a pause of more than 30 seconds or ofF status should be maintained, use a standard WN type.

WP type Pause Function
$A \leftrightarrow$ Synchronizing $\leftrightarrow B$
Features
Main Plant
Lightning may generate voltage drop for the
commercial power or power failure and for the load comercial requires a long-time recovery it can be
thansferred to the emergency power in advance
tran transterreded to the emergency power in advance
without interuption and back to the commercia
power without interrution
power without interruption.
(1) Power failure notified by KEPCO
(1) Power failure notified by KEPCO
(2) When the power is recovered and transferred (3) Whenen an instantaneous power failure is expected 3. When an instantaneous pover faiure is
due tote weather
(4)en testing a generator or equipment (4) When testing a generator or equipment Uninterruptible transfer is possible when
performing the planned maintenance or repairing performing the e planned maintenance or repairing
such as the regurar inspection of eletrical
equipment installed ar banks and stations. succh as the reguar inspection of e e
equipment installed a t banks and stations. UPS Power Transfer Equipmen
By examining the phase of both UPS powers, if they
are within the standard value, an uninterruptible are within the standard value, an uninterruptible
transfer is oossible.
Explanation on Transfer Operation

园
dred emergeny power ine

Precautions

Notel) Switching Capacity : AC-33B
Overcurrent Switching Performance IClosing 10×le, Breaking $10 \times$ le, $\operatorname{Cos} \varnothing=0.35$,
Rated Load Switching Performance 1 Closing $1 \times l e$, Breaking $1 \times l e$, Cos $\varnothing=0.8$
*Note2) Trip : The switch in the circuitit is opened to the neutral position (OFF) at Power A or B. Note3] 416CT/425CT Test Report held

Low Voltage Auto Transfer Switch . ATS, CTTS

Consideration points when applying and selecting

Relevant Standards

- UL 1008

IEC 60947-6-1
Control Command
Closing and trip transfer operation is completed within 0.3 second but setSequence so that itcan ber with command of 0.5 sec or more

Interlock
Install an interlock (electrical) so that A power source and B power source are not commanded simultaneously at the operating circuit.
In case of WN Type, set a Sequence so that closing command and trip command are not in the same direction.
TR Capacity for Operating Circuit
The TR capacity of operating circuit should be calculated as shown below and use the capacity that exceeds the calculated value.
Operating Voltage \times Operating Current $\times 0.5=1 \mathrm{JVA}$
ex) Operating Voltage AC220V Operating Current 4 A
$220 \times 4 \times 0.5=440 \mathrm{VA}$
Use TR with 440 VA or above

Control Circuit

ATS is designed to turn OFF the operating current using an internal SW after the operation is completed. When the operating current is turned OFF by an auxiliary SW of body, it may lead to malfunctioning.
Selection of Control Relay
Use the selected voltage Relay 27, 84 and Timer with contact conducting current that exceeds the ATS operating current.
Considering the chattering of control relay, select a relay that can interrupt the operating current which is safer.
*When the operating power is unstable, use a voltage fixed relay.

Type \& Marking Method

Installation Location

Avoid high-temperature and highly humid places and places with poisonous gas.

Installation Direction

ATS is designed to use it by installing it in a certain direction. When the installation direction is changed, the feature will be changed. So, install it accurately
ATS should be installed so that the body rating plate can be read properly when facing the fron and it should be installed without any twist, vertical to the panel.

* If a normal installation is not possible due to problems on wiring or equipment arrangement,
consult with our company.

Operating Power

In case of DC operation and if a dropper circuit is included in the operating power the operating power of ATS must be connected to the input part of dropper circuit.

Control Circuit Connection

Use a control power and control line with extra length.
In case of DC operation, be cautious of battery shortage and charging shortage.

Main Circuit Connection

Firmly connect it by selecting wire size and solderless terminal that meets the current capacity.
Be careful not to add an excessive stress to the main circuit terminal.
Especially, when connecting using a Busbar, be careful not to add an excessive stress to the main circuit terminal.

Precautions when Operating Handle
Manual operation of ATS should be carried out only when a detailed inspection of operating part and charging part is performed at no-load status.
There may be some differences in switch force, switch speed and so on based on the manual operation of the operator, so ATS features cannot be guaranteed.

Maintenance \& Inspection

Conduct maintenance and inspection at regular cycle in order to maintain the performance of ATS steadily and well.
*Refer to the maintenance and inspection items presented
in the instruction manual for the detailed information.
in the instruction manual for the detailed information.

Low Voltage Auto Transfer Switch ATS, CTTS

Option

160
${ }^{180}$

When using as CTD
When G,H termina
When G, H terminals are connected to Trip Circuit during a power failure, it immediately trips. If tripping is required at an optional time,it can be used by adding S / W
(Normal operation is possible within 30 seconds)

When using as Rectifier

C.D and E.F output terminals can be used as DC power
(Close, Open, Motor OCR Power and etc)

Contact Time Charts \& Circuit Diagrams

Low Voltage Auto Transfer Switch ATS, CTTS

WP Type

W Type

WN Type Internal Circuit

WN Type Operating Circuits

When using a TIMER for Transfer

In case of Manual-Auto COS Part

In case of a Capacitor Trip

Circuit Diagrams

| Low Voltage |
| :--- | :--- | :--- | :--- |
| Automatic |
| Transfer Switch |
| ATS, CTTS | WP Type

W Types 100~200A

400A

Xa1-Xa2,//Xb1-Xb2:
Control Switch
CC: Closing Coil CC: Closing Coil
Si: Silicon Rectifier

Operating Terminal
A1-A2: A-Power So A1-A2 : A-Power Sourc Closing Terminal
$B 1-B 2: B-$ $\underset{\substack{\text { B } \\ \text { Closing Terminal }}}{\text { B }}$

Circuit Diagrams

Low Voltage Automatic Transfer Sw
ATS, CTTS

Operating Circuit

Low Voltage
Automatic Transfer Switch ATS, CTTS

A1, A2	"A" Power source side(On)
AT1, AT2	"A" Power source side(Trip)
ATS1, ATS2	Switch, Position contacts
BTS1, BTS2	Switch, Auxiliary
AUX1,2	Swith, Control
AX, BX	"B"Power source sidel(On)
B1, B2	"B"Power source sidel(Trip)
BT1, BT2	Coil, Closing
C	Common
COM	Closed transition transer swiitch
CTTS	
E1, E2, E3	Standby power source conn.
NO	Normally open
NC	Normally closed
N1, N2, N3	Utility power source
S1A, S1B, S1C	
S2A, S2B	Switch, Position sensing
S3A, S3B, S3C	Coli, Trip
TC	Costomer load conn.
T1, T2, T3	

รач),
A6

Low Voltage
Automatic Transfer Switch ATS, CTTS

WN Types 61WN~62WN

Low Voltage
Automatic Transfer Switch ATS, CTTS

WN Type 64WN

Back

Type	A	B
2P	245	141
3P	296	192
$4 P$	347	243

Type	A	B
2P	215	111
$3 P$	251	147
4 P	287	183

Low Voltage
Automatic
Transfer Sw
ATS, CTTS

WN Type 66WN

Front

Back

Low Voltag
Automatic Transfer Switch ATS, CTTS

WN Type 68WN

External Sizes

Low Voltage
Automatic
Transfer Switch ATS, CTTS

WN Type 610WN

Low Voltage Automatic Transfer Switch ATS, CTTS

Back

Type	A	B
3P	452.5	334
4P	53.5	417

Low Voltage
Automatic
Transfer Switch ATS, CTTS

WN Type 616WN

Front

Back

Type	A	B
3P	452.5	334
4P	535.5	417

WN Type 620WN

Back

Type	A	B
$3 P$	527.5	409
$4 P$	635.5	517

External Sizes

Low Voltage
Automatic
Transfer Switch
ATS, CTTS
WN Types 625~630WN

WN Types 100A~1000A

Back

WN Types 1200A~3000A

Type		100-200A		400 A		600 A		800 A	
		Front	Back	Front	Back	Front	Back	Front	Back
	A	152	152	152	152	200	200	200	200
B	2P	111	111	141	141	-	-	-	-
	3 P	147	147	192	192	224	224	284	284
	4 P	183	183	243	243	284	284	364	364
c	2P	-	88	-	118	-	-	-	-
	3 P	-	124	-	169	-	200	-	250
	4 P	-	160	-	220	-	260	-	330
	D	-	9.5	-	9.5	-	9	-	9
	E	-	172	-	155	-	215	-	240
	F	10	10	10	10	10	10	10	10
	G	7	7	7	7	10	10	10	10
Type		1000A		1200A		1600A		2000A	3000A
		Front	Back	Front	Back	Front	Back	Back	Back
	A	200	200	349.5	349.5	34.5	349.5	349.5	349.5
B	2 P	-	-	-	-	-	-	-	-
	3 P	284	284	334	334	334	334	409	482
	4 P	364	364	417	417	417	417	517	617
	2P	-	-	-	-	-	-	-	-
	3 P	-	250	-	279	-	279	354	432
	4 P	-	330	-	362	-	362	462	565
P		-	9	-	18.5	-	18.5	18.5	18.5
E		-	240	-	390	-	390	390	390
		10	10	14	14	14	14	14	14
	G	10	10	-	-	-	-	-	-

External Sizes

Low Voltage
Automatic Transfer Swi ATS, CTTS

HS Type 21HS

Part Names

- A Operating circuit terminal
®B Operating circuit termina
® A power source side main
© A power source s
circuit terminal
- Loading side mai
- Loading side main circuit terminal
B
power
© B power source sit
circuit terminal
Manual operating lever
$\underset{\substack{\text { Panel Processing Dimension } \\ \text { (Fionti/1ioA } 2 P}}{\text { 2p }}$

HS Type 22HS

Low Voltage
Automatic Transfer Switch ATS, CTTS

W Types 61W~62W

W Type 64W

Type	A	B
$2 P$	245	141
$3 P$	296	192
$4 P$	347	243

External Sizes

W Types 100A~200A

W Type 400A

Type		100-200A	400 A	
		Front	Front	Back
A		91	152	-
B	2P	-	141	141
	3 P	148	192	192
	4 P	148	243	243
c		150	152	152
D	${ }_{2} \mathrm{P}$	-	-	120
	3 P	-	-	170
	4 P	-	-	220
E		-	-	9.5
F		-	-	155
G		4	3	3
H		9	9	9

Low Voltag Automatic Transfer Switch ATS, CTTS

WP Type 61WP Front connection

WP Type 61WP Back connection

Arc space size (S1)
30 mm when the m circuitivoltage is is 220 V and
60mm when 60 mm when it is 600 V .

Type	A	B
2P	214	113
3P	244	143
4P	274	173

WP Type 62WP Front connection

External Sizes

WP Type 62WP Back connection

Arc space size (S11) is
30 mm when the ma circuit voltage is 220 V an 60 mm when it i 600 V .

Type	A	B
2P	244	143
3P	289	188
4 P	334	233

WP Type 64WP Front connection

WP Type 64WP Back connection

Arc space size (S11) is
30 mm when the ma circuit voltage is 220 V an 60 mm when it is 600 V .

Type	A	B
2P	290	174
3P	350	234
4 P	410	294

[^0]
WP Types 61-64WP Front connection

WP Types 61-64WP Back connection

WP-Type

Low Voltage
Automati
Transfer Switch
ATS, CTTS

CTTS Type 61CT Front connection

Arc space size (S1) is 30 mm when the main circuit voltage is 220 V and
60 mm when it is 600 V .

CTTS Type 62CT Front connection

(1) Manual Operation Hol - Switch Display

(2) Swith Display
©
B -Power Source

- Load Part Main Circuit Termit Termina © A-Powerr Source Main Circuit Termina - Auxiliary Switch
- Manual Handle

Arc space size $[\mathrm{S} 11$ is 30 mm when
the main circuit voltage is 220 V and
60 mm whenitis 6 OOOV
60 mm when it is 60

Type	A	B
2P	240.8	229.8
3P	285.8	27.4 .8
4P	330.8	3198

Low Voltage Automatic Transfer Switch ATS, CTTS

CTTS Type 64CT Front connection

- Manual Operation Hole
© Switch Display
© B-Power Source Main Circuit Termina © Load Part Main Circuit Terminal
© A-Power Source Main Circuiterm - Auxiliary Switch
-

Arc space size (S1) is 30 mm whe the main circuit voltage is 220 V and
60 mm when it 6 onov 60 mm when it is 600 V .

Type	A	B
2P	292.5	278.5
3P	352.5	338.5
4P	412.5	398.5

CTTS Type 66-616CT Front connection

Arc space Size

| Main Circuit Voltage | S1 | S2 |
:---	:---	:---	$200 \mathrm{~V} \quad 430 \mathrm{~mm} 25 \mathrm{~mm}$					
6000 V	430 mm	25 mm						
60 mm	90 mm		Type 600 A 800 A 1000 A 1200 A 1600 A AP $465 \quad 510$	A	$3 P$	465	510	570
:---	:---	:---	:---	:---				
	$4 P$	530	590	670				
					$\begin{array}{llll}\text { 3P } & 435 & 480\end{array}$ B 4 CP 500 C 545	G	10	12
:---	:---	:---						
	95	10		C	10			
:---	:---							
I	95		I	65	80			
:---	:---	:---						
L	70	90						

\qquad | \mathbf{L} | 12.5 | | |
| :--- | :--- | :--- | :--- |
| | | 10 | |

External Sizes

Low Voltage
Automatic
Transfer Switch
ATS, CTTS

CTTS Types 66-616CT Back connection

Low Voltage

TTS Types 620-630CT Back connection

- Operating Circuit Terminal
© Manual Operation Ho
© Auxiliary Swith
- A-Power Source Main Circuit Terminal
- Load Part Main Circuit Terminal
 (1) Switch Dispray
(2) Manual Handle

Arc space Size

Main Circuit Voltage			S1	S2
200 V			50	560
600 V			100	600
Type		2000 A		3000A
A	3	683		835
	4	820		1020
B	3 P	645		795
	4	780		980
E		119		114
F		132.5		130
G		15		20
H		15		20
I		103		128
J		135		185
		90		125

External Sizes

Panel Processing Dimensions

61-64CT Front connection

66-616CT Front connection

66-616CT Back connection

	Type	600 A	800 A	1000 A	1200 A

620-630CT Back connection

	Type	2000 A	3000 A
A	$3 P$	645	795
	4P	780	980
B	$3 P$	420	570
	4P	555	755

[^0]: - Operation Main Circui
 (3) Manual Operating Shaft
 © Auxiliary Switch
 ©-Power Source Main
 Circuit Terminal
 - Load Part Main Circuit
 - B-Power Source Main

