Presentation 6
General overview 14
Detailed contents 14
Circuit breakers and switch-disconnectors 16
NT06 to NT16 and NW08 to NW63 16
NT06 to NT16 18
NW08 to NW63 20
Micrologic control units 22
Overview of functions 22
Micrologic A "ammeter" 24
Micrologic P "power" 26
Micrologic H "harmonics" 30
Accessories and test equipment 32
Communication 34
COM option in Masterpact 34
Overview of functions 35
Masterpact in a communication network 36
Masterpact and the MPS100 Micro Power Server 38
Connections 40
Overview of solutions 40
Optional accessories 41
Locking 44
On the device 44
On the chassis 45
Indication contacts 46
Remote ON / OFF 48
Remote tripping 51
Accessories 52
Source-changeover systems 53
Presentation 53
Mechanical interlocking 54
Electrical interlocking 55
Associated automatic controllers 56
Display modules 57
Dimensions and connection 59
Electrical diagrams 87
Installation recommendations 97
Additional characteristics 121
Catalogue numbers, spare parts and order form 127

This chapter describes all the functions offered by Masterpact NT and NW devices. The two product families have identical functions implemented using the same or different components depending on the case.

Circuit breakers and switch-disconnectors page 16

■ ratings:

- Masterpact NT 630 to 1600 A
- Masterpact NW 800 to 6300 A
- circuit breakers type N1, H1, H2, H3, L1

■ switch-disconnectors type NA, HA, HF

- 3 or 4 poles
- fixed or drawout versions
- option with neutral on the right
- protection derating.

5.0 selective protection
6.0 selective + earth-fault protection
7.0 selective + earth-leakage protection
- external sensor for earth-fault protection
- rectangular sensor for earth-leakage protection
\square setting options (long-time rating plug):
- low setting 0.4 to 0.8 x Ir
\square high setting 0.8 to 1 x Ir
\square without long-time protection
■ external power-supply module
- battery module.

Communication	page 34
$\boxed{\text { COM option in Masterpact }}$	
\square Masterpact in a communication network	
\square Masterpact and the Micro Power Server MPS100.	

Connections	page 40
\square rear connection (horizontal or vertical)	
\square front connection	mixed connections

- optional accessories
\square bare-cable connectors and connector shields
- terminal shields
- vertical-connection adapters
- cable-lug adapters

- interphase barriers
\square spreaders
- disconnectable front-connection adapter
- safety shutters, shutter locking blocks, shutter
position indication and locking.

General overview
Detailed contents

Indication contacts page 46

■ standard or low-level contacts:
\square ON/OFF indication (OF)

- "fault trip" indication (SDE) - carriage switches for connected (CE) disconnected (CD) and test (CT) positions
■ programmable contacts:
- 2 contacts (M2C)
- 6 contacts (M6C).

Circuit breakers and switch-disconnectors NT06 to NT16 and NW08 to NW63

NT and NW selection criteria

	Masterpact NT				Masterpact NW	
	Standard applications			Special	Standard applications	
	NT630-1600 H1	NT630-1600 H2	NT630-1000 L1	NT630-1600 H10	NW800-1600 N1	NW800-4000 H1
Type of application	Standard applications with low short-circuit currents	Applications with medium-level short-circuit currents	Limiting circuit breaker for protection of cable-type feeders or upgraded transformer ratings	1000 V systems, e.g. mines and wind power	Standard applications with low short-circuit currents	Circuit breaker for industrial sites with high short-circuit currents
Icu/lcs at 440 V	42 kA	50 kA	130 kA	-	42 kA	65 kA
Icu/lcs at 1000 V	-	-	-	20 kA	-	-
Icu/lcs at 500 V DC L/R $<15 \mathrm{~ms}$	-	-	-	-	-	-
Position of neutral	Left	Left	Left	Left	Left	Left or right
Fixed	F	F	F	F	F	F
Drawout	D	D	D	D	D	D
Switch-disconnector version	Yes	No	No	Yes	Yes	Yes
Front connection	Yes	Yes	Yes	Yes	Yes	Yes up to 3200 A
Rear connection	Yes	Yes	Yes	Yes	Yes	Yes
Type of Micrologic control unit	A, P, H	A, P, H	A, P, H	A, consult us for P and H	A, P, H	A, P, H

Masterpact NT06 to NT16 installation characteristics

Circuit breaker		NT06, NT08, NT10				NT12, NT16		
Type		H1	H2	L1	H10	H1	H2	H10
Connection								
Drawout	FC	\square	\square	\square	-	\square	-	-
	RC	-	-	-	-	-	-	-
Fixed	FC	-	-	$\stackrel{\square}{\square}$	-	-	-	-
	RC	-	-	-	-	-	-	-

Dimensions (mm) H x W x D

Drawout	3 P	$322 \times 288 \times 277$
	4 P	$322 \times 358 \times 277$
Fixed	3 P	$301 \times 276 \times 196$
4 P	$301 \times 346 \times 196$	

Weight (kg) (approximate)

Drawout	$3 \mathrm{P} / 4 \mathrm{P}$	$30 / 39$
Fixed	$3 \mathrm{P} / 4 \mathrm{P}$	$14 / 18$

Masterpact NW08 to NW63 installation characteristics

Circuit breaker		NW08, NW10, NW12, NW16					NW20				
Connection		N1	H1	H2	L1	H10	H1	H2	H3	L1	H10
Drawout	FC	-	-	-	-	-	-	-	-	-	-
	RC	-	-	-	-	-	-	-	-	-	-
Fixed	FC	-	-	-	-	-	-	-	-	-	-
	RC	-	-	-	-	-	-	-	-	-	-

Dimensions (mm) H x W x D			
Drawout		3 P	
	4 P	$439 \times 441 \times 395$	
	Fixed	3 P	
	4 P	$352 \times 556 \times 395$	
		$352 \times 537 \times 297$	

Weight (kg) (approximate)		
Drawout	3P/4P	90/120
Fixed	3P/4P	60/8

[^0]
Circuit breakers and switch-disconnectors
 NT06 to NT16 and NW08 to NW63

			Special applications				
NW800-4000 H2	NW2000-4000 H3	NW800-2000 L1	NW H10	NW H2 with anticorrosion protection	$\begin{aligned} & \text { NW1000-4000 } \\ & \text { DC N } \end{aligned}$	$\begin{aligned} & \text { NW1000-4000 } \\ & \text { DC H } \end{aligned}$	NW earthing switch
High-performance circuit breaker for heavy industry with high shortcircuit currents	Incoming device with very high performance for critical applications	Limiting circuit breaker for protection of cable-type feeders or upgraded transformer ratings	1000 V systems, e.g. mines and wind power	Environments with high sulphur contents	DC system	DC system	Installation earthing
100 kA	150 kA	150 kA	-	100 kA	-	-	-
-	-	-	50 kA	-	-	-	-
-	-	-	-	-	35 kA	85 kA	-
Left or right	Left	Left	Left	Left or right	-	-	-
F	-	-	-	-	F	F	-
D	D	D	D	D	D	D	D
Yes							
Yes up to 3200 A	Yes up to 3200 A	Yes up to 3200 A	No	Yes up to 3200 A	No	No	Yes up to 3200 A
Yes							
A, P, H	A, P, H	A, P, H	A, consult us for P and H	A, P, H	DC Micrologic	DC Micrologic	-

Circuit breakers and switch-disconnectors NT06 to NT16

(1) $50^{\circ} \mathrm{C}$: rear vertical connected. Refer to temperature derating tables for other connection types.
(2) See the current-limiting curves in the "additional
characteristics" section.
(3) SELLIM system.
(4) Available for 480 V NEMA.
(5) Suitable for motor control (direct-on-line starting).

Common characteristics		$3 / 4$
Number of poles	Ui	1000
Rated insulation voltage (V)	Uimp	12
Impulse withstand voltage (kV)	Ue	$690 / 1000$
Rated operational voltage (V AC $50 / 60 \mathrm{~Hz})$	IEC $60947-2$	-4
Suitability for isolation	IEC $60664-1$	3
Degree of pollution		

Circuit-breaker characteristics as per IEC 60947-2

Rated current (A)	In	at $40^{\circ} \mathrm{C} / 50^{\circ} \mathrm{C}{ }^{(1)}$
Rating of 4th pole (A)		
Sensor ratings (A)		
Type of circuit breaker	Icu	$220 / 415 \mathrm{~V}$
Ultimate breaking capacity (kA rms)		440 V
V AC $50 / 60 \mathrm{~Hz}$	525 V	
		690 V
		1000 V
Rated service breaking capacity (kA rms)	Ics	$\%$ Icu
Utilisation category		
Rated short-time withstand current (kA rms)	Icw	0.5 s
V AC 50/60 Hz		1 s
		3 s
Integrated instantaneous protection (kA peak $\pm 10 \%)$		
Rated making capacity (kA peak)	Icm	$220 / 415 \mathrm{~V}$
V AC $50 / 60 \mathrm{~Hz}$		440 V
		525 V
		690 V
		1000 V

Break time (ms) between tripping order and arc extinction
Closing time (ms)

Circuit-breaker characteristics as per NEMA AB1

Breaking capacity (kA)	240 V
V AC $50 / 60 \mathrm{~Hz}$	480 V
	600 V

Switch-disconnector characteristics as per IEC 60947-3 and Annex A

Type of switch-disconnector	Icm	220 V
Rated making capacity (kA peak)		440 V
AC23A/AC3 category V AC $50 / 60 \mathrm{~Hz}$	$525 / 690 \mathrm{~V}$	
		1000 V
Rated short-time withstand current (kA rms)	Icw	0.5 s
AC23A/AC3 category V AC $50 / 60 \mathrm{~Hz}$	1 s	
		3 s
Ultimate breaking capacity Icu (kA rms) with an external protection relay	690 V	

Maximum time delay: 350 ms
Mechanical and electrical durability as per IEC 60947-2/3 at In/le

Service life Mechanical	with maintenance	
C/O cycles x 1000	without maintenance	
Type of circuit breaker Rated current	$\ln (\mathrm{A})$	
C/O cycles x 1000 Electrical IEC 60947-2	without maintenance	
Type of circuit breaker or switch-disc Rated operationnal current	connector le (A)	AC23A
C/O cycles $\times 1000$ Electrical IEC 60947-3	without maintenance	$\begin{aligned} & 440 \mathrm{~V}(4) \\ & 690 \mathrm{~V} \end{aligned}$
Type of circuit breaker or switch-disc Rated operationnal current	connector (A)	AC3 ${ }^{(5)}$
Motor power		$\begin{aligned} & 380 / 415 \mathrm{~V}(\mathrm{~kW}) \\ & 440 \mathrm{~V}(\mathrm{~kW}) \end{aligned}$
C/O cycles x 1000 Electrical IEC 60947-3 Annex M/IEC 60947-4-1	without maintenance	$\begin{aligned} & 440 \mathrm{~V}{ }^{(4)} \\ & 690 \mathrm{~V} \end{aligned}$

Circuit breakers and switch-disconnectors
NT06 to NT16

Sensor selection

Sensor rating (A)	$250{ }^{(1)}$	400	630	800	1000	1250	1600
Ir thresold setting(A)	100 to 250	160 to 400	250 to 630	320 to 800	400 to 1000	500 to 1250	640 to 1600

(1) For NTO2 rating, please consult us.

Functions
and characteristics

Circuit breakers and switch-disconnectors NW08 to NW63

(1) $50^{\circ} \mathrm{C}$: rear vertical connected. Refer to temperature derating tables for other connection types.
(2) See the current-limiting curves in the "additional characteristics" section.
(3) Equipped with a trip unit with a making current of 90 kA peak.
(4) External protection must comply with permissible thermal constraints of the circuit breaker (please consult us).
No fault-trip indication by the SDE or the reset button.
(5) Available for 480 V NEMA.
(6) Suitable for motor control (direct-on-line starting).

Common characteristics		
Number of poles $3 / 4$ Rated insulation voltage (V) Ui $1000 / 1250$ Impulse withstand voltage (kV) Uimp 12 Rated operational voltage (V AC $50 / 60 \mathrm{~Hz})$ Ue $690 / 1150$ Suitability for isolation IEC $60947-2$ דH Degree of pollution IEC $60664-1$ $4(1000 \mathrm{~V}) / 3(1250 \mathrm{~V})$		

Circuit-breaker characteristics as per IEC 60947-2

Rated current (A)		at $40^{\circ} \mathrm{C} / 50^{\circ} \mathrm{C}{ }^{(1)}$	
Rating of 4th pole (A)			
Sensor ratings (A)			
Type of circuit breaker			
Ultimate breaking capacity (kA rms) V AC $50 / 60 \mathrm{~Hz}$	Icu	220/415/440 V	
		525 V	
		690 V	
		1150 V	
Rated service breaking capacity (kA rms)	Ics	\% Icu	
Utilisation category			
Rated short-time withstand current (kA rms) V AC $50 / 60 \mathrm{~Hz}$	Icw	1 s	
		3 s	
Integrated instantaneous protection (kA peak $\pm 10 \%$)			
Rated making capacity (kA peak) V AC $50 / 60 \mathrm{~Hz}$	Icm	220/415/440 V	
		525 V	
		690 V	
		1150 V	
Break time (ms) between tripping order and arc extinction			
Closing time (ms)			
Circuit-breaker characteristics as per NEMA AB1			
Breaking capacity (kA) V AC $50 / 60 \mathrm{~Hz}$		240/480 V	
		600 V	
Unprotected circuit-breaker characteristics:			
Tripping by shunt trip as per IEC 60947-2			
Ultimate breaking capacity (kA rms) V AC 50/60 Hz	Icu	220... 690 V	
Rated service breaking capacity (kA rms)	Ics	\% Icu	
Rated short-time withstand current (kA rms)	Icw	1 s	
		3 s	

Overload and short-circuit protection with external protection relay:
short-circuit protection, maximum delay: $350 \mathrm{~ms}{ }^{(4)}$
Rated making capacity (kA peak) V AC $50 / 60 \mathrm{~Hz}$ Icm 220... 690 V

Switch-disconnector characteristics as per IEC 60947-3 and Annex A

Type of switch-disconnector		
Rated making capacity (kA peak)	Icm	$220 \ldots 690 \mathrm{~V}$
AC23A/AC3 category V AC 50/60 Hz		1150 V
Rated short-time withstand current (kA rms)	Icw	0.5 s
AC23A/AC3 category V AC 50/60 Hz		1 s
		3 s

Mechanical and electrical durability as per IEC 60947-2/3 at In/le

Service life Mechanical	Mechanical with maintenance	
C/O cycles $\times 1000$	without maintenance	
Type of circuit breaker Rated current	$\ln (\mathrm{A})$	
C/O cycles $\times 1000 \quad$ Electrical IEC 60947-2	without maintenance	$\begin{aligned} & 440 V^{(5)} \\ & 690 \mathrm{~V} \\ & 1150 \mathrm{~V} \end{aligned}$
Type of circuit breaker or switch-dis Rated operational current	Type of circuit breaker or switch-disconnector le (A)	AC23A
C/O cycles $\times 1000 \quad$ Electrical IEC 60947-3	without maintenance	$\begin{aligned} & 440 V^{(5)} \\ & 690 \mathrm{~V} \end{aligned}$
Type of circuit breaker or switch-disconnector le (A) Rated operational current		AC3 ${ }^{(6)}$
Motor power		$\begin{aligned} & 380 / 415 \mathrm{~V}(\mathrm{~kW}) \\ & 440 \mathrm{~V}(5)(\mathrm{kW}) \\ & 690 \mathrm{~V}(\mathrm{~kW}) \end{aligned}$
C/O cycles x 1000 Electrical IEC 60947-3 Annex M/IEC 60947-4-1	without maintenance	440/690 V ${ }^{(5)}$

Rated making capacity (kA peak) V AC $50 / 60 \mathrm{~Hz}$ Icm $220 . .690 \mathrm{~V}$

IEC 60947-3 Annex M/IEC 60947-4-1

Circuit breakers
 and switch-disconnectors
 NW08 to NW63

Sensor selection

Sensor rating (A)
Ir thresold setting(A)
$\left.\begin{array}{|l|l|l|l|l|l|l|l|l|l|l|l|l}\hline 250{ }^{(1)} & 400 & 630 & 800 & 1000 & 1250 & 1600 & 2000 & 2500 & 3200 & 4000 & 5000 & 6300 \\ \hline \begin{array}{l}100 \\ \text { to } 250\end{array} & \begin{array}{l}160 \\ \text { to } 400\end{array} & \begin{array}{l}250 \\ \text { to } 630\end{array} & \begin{array}{l}320 \\ \text { to } 800\end{array} & \begin{array}{l}400 \\ \text { to } 1000\end{array} & \begin{array}{l}500 \\ \text { to } 1250\end{array} & \begin{array}{l}630 \\ \text { to } 1600\end{array} & 800 & 1000 & 1250 \\ \text { to } 2000 & 1600 & 2000 & 2500 \\ \text { to } 2500 & \text { to } 3200 & \begin{array}{l}\text { to } 4000\end{array} \\ \text { to } 5000\end{array}\right\}$
(1) For NW02 rating, please consult us.

All Masterpact circuit breakers are equipped with a Micrologic control unit that can be changed on site.
Control units are designed to protect Power circuits and loads. Alarms may be programmed for remote indications. Measurements of current, voltage, frequency, power and power quality optimise continuity of service and energy management.

Dependability

Integration of protection functions in an ASIC electronic component used in all Micrologic control units guarantees a high degree of reliability and immunity to conducted or radiated disturbances.
On Micrologic A, P and H control units, advanced functions are managed by an independent microprocessor

Micrologic name codes

2.0 A
 X Y Z

X: type of protection

■ 2 for basic protection

- 5 for selective protection

■ 6 for selective + earth-fault protection
■ 7 for selective + earth-leakage protection.

Y: control-unit generation

Identification of the control-unit generation.
" 0 " signifies the first generation.
Z : type of measurement
■ A for "ammeter"

- P for "power meter"

■ H for "harmonic meter".

Current protection
Micrologic 2: basic protection

Micrologic 5: basic protection

Protection:
long time

+ short time
+ instantaneous

Micrologic 6: selective + earth-fault protection

Protection:
long time

+ short time
+ instantaneous
+ earth fault

Micrologic 7: selective + earth-leakage protection

Protection:
long time

+ short time
+ instantaneous
+ earth leakage

Micrologic control units Overview of functions

Measurements and programmable protection

A: ammeter

- $I_{1}, I_{2}, I_{3}, I_{N}$, $l_{\text {earth-fault, }} l_{\text {earth-leakage }}$ and maximeter for these measurements
- fault indications
- settings in amperes and in seconds.

P: A + power meter + programmable protection

- measurements of V, A, W, VAR, VA, Wh, VARh, VAh, Hz, V ${ }_{\text {peak }}$, A peak, power factor and maximeters and minimeters $^{\text {n }}$
- IDMTL long-time protection, minimum and maximum voltage and frequency, voltage and current imbalance,
phase sequence, reverse power
■ load shedding and reconnection depending on power or current
■ measurements of interrupted currents, differentiated fault indications, maintenance indications, event histories and time-stamping, etc.

H: P + harmonics

■ power quality: fundamentals, distortion, amplitude and phase of harmonics up to the 31st order
■ waveform capture after fault, alarm or on request

- enhanced alarm programming: thresholds and actions.

5.0 A

5.0 P

5.0 H

6.0 P

6.0 H

7.0 A

7.0 P

7.0 H

Micrologic A control units protect power circuits.
They also offer measurements, display, communication and current maximeters. Version 6 provides earth-fault protection, version 7 provides earth-leakage protection.

1 Long-time current setting and tripping delay.
2 Overload signal (LED) at 1.125 Ir.
3 Short-time pick-up and tripping delay.
4 Instantaneous pick-up.
5 Earth-leakage or earth-fault pick-up and tripping delay.
6 Earth-leakage or earth-fault test button.
7 Long-time rating plug screw.
8 Test connector.
9 Lamp test, reset and battery test.
10 Indication of tripping cause.
11 Digital display.
12 Three-phase bargraph and ammeter.
13 Navigation buttons.

Protection settings

济:
Protection thresholds and delays are set using the adjustment dials
The selected values are momentarily displayed in amperes and in seconds.

Overload protection

True rms long-time protection.
Thermal memory: thermal image before and after tripping.
Setting accuracy may be enhanced by limiting the setting range using a different long-time rating plug.
The long-time rating plug "OFF" enables to cancel the overload protection.

Short-circuit protection

Short-time (rms) and instantaneous protection.
Selection of $\mathrm{I}^{2 t}$ type (ON or OFF) for short-time delay

Earth fault protection

Residual or source ground return.
Selection of $\mathrm{I}^{2 t}$ type (ON or OFF) for delay.
Residual earth-leakage protection (Vigi).
Operation without an external power supply
Ω Protected against nuisance tripping.
\approx DC-component withstand class A up to 10 A .

Neutral protection

On three-pole circuit breakers, neutral protection is not possible.
On four-pole circuit breakers, neutral protection may be set using a three-position switch: neutral unprotected (4P 3d), neutral protection at $0.5 \ln (4 P 3 d+N / 2)$, neutral protection at \ln (4P 4d).

Zone selective interlocking (ZSI)

A ZSI terminal block may be used to interconnect a number of control units to provide total discrimination for short-time and earth-fault protection, without a delay before tripping.

"Ammeter" measurements

\qquad ma
Micrologic A control units measure the true rms value of currents.
They provide continuous current measurements from 0.2 to 20 In and are accurate to within 1.5% (including the sensors)
A digital LCD screen continuously displays the most heavily loaded phase (Imax) or displays the $I_{1}, I_{2}, I_{3}, I_{N}, I_{g}, I_{\Delta n}$, stored-current (maximeter) and setting values by successively pressing the navigation button
The optional external power supply makes it possible to display currents < $20 \% \mathrm{In}$. Below 0.05 In , measurements are not significant. Between 0.05 and 0.2 In , accuracy is to within 0.5% In $+1.5 \%$ of the reading.

Communication option

In conjunction with the COM communication option, the control unit transmits the following:
■ setting values
■ all "ammeter" measurements
$■$ tripping causes

- maximeter reset.

Micrologic control units Micrologic A "ammeter"

Ammeter

Continuous current measurements
Display from 20 to 200 \% of In
Accuracy: 1.5 \% (including sensors)

Maximeters

Micrologic 5.0 / 6.0 / 7.0 A

$\begin{array}{llllll}11 & 12 & l 3 & l N & l g & I \Delta n\end{array}$
No auxiliary source (where I>20\% In)
11 max 12 max 13 max IN max Ig max I Δn max

Note: All current-based protection functions require no auxiliary source.
The test / reset button resets maximeters, clears the tripping indication and tests the battery.

Micrologic P control units include all the functions offered by Micrologic A. In addition, they measure voltages and calculate power and energy values. They also offer new protection functions based on currents, voltages, frequency and power reinforce load protection.

1 Long-time current setting and tripping delay.
2 Overload signal (LED).
3 Short-time pick-up and tripping delay.
4 Instantaneous pick-up.
5 Earth-leakage or earth-fault pick-up and tripping delay.
6 Earth-leakage or earth-fault test button.
7 Long-time rating plug screw.
8 Test connector.
9 Lamp + battery test and indications reset.
10 Indication of tripping cause.
11 High-resolution screen.
12 Measurement display.
13 Maintenance indicators.
14 Protection settings.
15 Navigation buttons.
16 Hole for settings lockout pin on cover.

Protection settings

The adjustable protection functions are identical to those of Micrologic A (overloads, short-circuits, earth-fault and earth-leakage protection).

Fine adjustment

Within the range determined by the adjustment dial, fine adjustment of thresholds (to within one ampere) and time delays (to within one second) is possible on the keypad or remotely using the COM option.
IDMTL (Inverse Definite Minimum Time lag) setting
Coordination with fuse-type or medium-voltage protection systems is optimised by adjusting the slope of the overload-protection curve. This setting also ensures better operation of this protection function with certain loads.

Neutral protection

On three-pole circuit breakers, neutral protection may be set using the keypad or remotely using the COM option, to one of four positions: neutral unprotected (4P 3d), neutral protection at $0.5 \ln (4 \mathrm{P} 3 \mathrm{~d}+\mathrm{N} / 2)$, neutral protection at $\ln (4 \mathrm{P} 4 \mathrm{~d})$ and neutral protection at $1,6 \ln (4 \mathrm{P} 3 \mathrm{~d}+1,6 \mathrm{~N})$. Neutral protection at $1,6 \ln$ is used when the neutral conductor is twice the size of the phase conductors (major load imbalance, high level of third order harmonics).
On four-pole circuit breakers, neutral protection may be set using a three-position switch or the keypad: neutral unprotected (4P 3d), neutral protection at $0.5 \ln (4 \mathrm{P} 3 \mathrm{~d}$ $+N / 2)$, neutral protection at $\ln (4 \mathrm{P} 4 \mathrm{~d})$. Neutral protection produces no effect if the long-time curve is set to one of the IDMTL protection settings.
Programmable alarms and other protection (12)

Depending on the thresholds and time delays set using the keypad or remotely using the COM option, the Micrologic P control unit monitors currents and voltage, power, frequency and the phase sequence. Each threshold overrun is signalled remotely via the COM option. Each threshold overrun may be combined with tripping (protection) or an indication carried out by an optional M2C or M6C programmable contact (alarm), or both (protection and alarm).
Load shedding and reconnection. \qquad (1)

Load shedding and reconnection parameters may be set according to the power or the current flowing through the circuit breaker. Load shedding is carried out by a supervisor via the COM option or by an M2C or M6C programmable contact.

Measurements

The Micrologic P control unit calculates in real time all the electrical values ($\mathrm{V}, \mathrm{A}, \mathrm{W}$, VAR, VA, Wh, VARh, VAh, Hz), power factors and crest factors.
The Micrologic P control unit also calculates demand current and demand power over an adjustable time period. Each measurement is associated with a minimeter and a maximeter.
In the event of tripping on a fault, the interrupted current is stored. The optional external power supply makes it possible to display the value with the circuit breaker open or not supplied.
Histories and maintenance indicators. \qquad θ
The last ten trips and alarms are recorded in two separate history files. Maintenance indications (contact wear, operation cycles, etc.) are recorded for local access.

Indication option via programmable contacts

The M2C (two contacts) and M6C (six contacts) auxiliary contacts may be used to signal threshold overruns or status changes. They can be programmed using the keypad on the Micrologic P control unit or remotely using the COM option.

Communication option (COM)

The communication option may be used to:
■ remotely read and set parameters for the protection functions

- transmit all the calculated indicators and measurements

■ signal the causes of tripping and alarms

- consult the history files and the maintenance-indicator register.
- maximeter reset.

An event log and a maintenance register, stored in control-unit memory but not available locally, may be accessed in addition via the COM option.

[^1]
Micrologic control units Micrologic P "power"

Load shedding and reconnection

Measured value

Current	I
Power	P

Micrologic 5.0 / 6.0 / 7.0 P

Seuil	Temporisation
0.5 to 1 Ir per phases	20% tr to 80% tr
200 kW to 10 MW	10 to 3600 s

Default display.

Display of a voltage.

Display of a frequency.

Display of a tripping history.

Display of a maximum current.

Display of a power.

Display of a demand power.

Display after tripping.

Navigation from one display to another is intuitive. The six buttons on the keypad provide access to the menus and easy selection of values. When the setting cover is closed, the keypad may no longer be used to access the protection settings, but still provides access to the displays for measurements, histories, indicators, etc.
Measurements.

Instantaneous values

The value displayed on the screen is refreshed every second.
Minimum and maximum values of measurements are stored in memory (minimeters and maximeters).

Currents					
1 rms	A	1	2	3	N
	A	E-fault		E-leakage	
1 max rms	A	1	2	3	N
	A	E-fault		E-leakage	
Voltages					
U rms	V	12	23	31	
V rms	V	1 N	2N	3N	
U average rms	V	$(\mathrm{U} 12+\mathrm{U} 23+\mathrm{U} 31) / 3$			
U unbalance	\%				
Power, energy					
P active, Q reactive, S apparent	W, Var, VA	Totals			
E active, E reactive, E apparent	Wh, VARh, VAh	Totals consumed - supplied Totals consumed Totals supplied			
Power factor	PF	Total			
Frequencies					
F	Hz				

Demand metering

The demand is calculated over a fixed or sliding time window that may be programmed from 5 to 60 minutes. According to the contract signed with the power supplier, an indicator associated with a load shedding function makes it possible to avoid or minimise the costs of overrunning the subscribed power. Maximum demand values are systematically stored and time stamped (maximeter).

Currents	A	1	2	3	N
I demand	A	E-fault		E-leakage	
I max demand	A	1	2	3	N
	A	E-fault		E-leakage	
Power					
P, Q, S demand	W, Var, VA	Totals			
P, Q, S max demand	W, Var, VA	Totals			

Minimeters and maximeters

Only the current and power maximeters may be displayed on the screen.

Histories

The last ten trips and alarms are recorded in two separate history files that may be displayed on the screen.

- tripping history:
\square type of fault
\square date and time
\square values measured at the time of tripping (interrupted current, etc.)
■ alarm history:
- type of alarm
- date and time
\square values measured at the time of the alarm
Maintenance indicators (with COM option) \qquad 8
A number of maintenance indicators may be called up on the screen:
■ contact wear
- operation counter:
- cumulative total
\square total since last reset.

Display of an event log on a supervisor.

With the communication option

Additional measurements, maximeters and minimeters
Certain measured or calculated values are only accessible with the COM communication option:
■ I peak $/ \sqrt{2}$, $\left(11+I_{2}+I_{3}\right) / 3$, I unbalance

- load level in \% Ir
- total power factor.

The maximeters and minimeters are available only via the COM option for use with a supervisor.

Event log

All events are time stamped.

- trips
- beginning and end of alarms
- modifications to settings and parameters
- counter resets
- system faults:
- fallback position

■ thermal self-protection

- loss of time
- overrun of wear indicators

■ test-kit connections
\square etc.

Maintenance register

Used as an aid in troubleshooting and to better plan for device maintenance operations.

- highest current measured

■ operation counter
■ number of test-kit connections
■ number of trips in operating mode and in test mode

- contact-wear indicator.

Additional technical characteristics

Setting the display language

System messages may be displayed in six different languages. The desired language is selected via the keypad.

Protection functions

All current-based protection functions require no auxiliary source. Voltage-based protection functions are connected to AC power via a voltage measurement input built into the circuit breaker.

Measurement functions

Measurement functions are independent of the protection functions.
The high-accuracy measurement module operates independently of the protection module, while remaining synchronised with protection events.

Measurement-calculation mode

- measurement functions implement the new "zero blind time" concept which consists in continuously measuring signals at a high sampling rate. The traditional "blind window" used to process samples no longer exists. This method ensures accurate energy calculations even for highly variable loads (welding machines, robots, etc.)
■ energies are calculated on the basis of the instantaneous power values, in two manners:
\square the traditional mode where only positive (consumed) energies are considered \square the signed mode where the positive (consumed) and negative (supplied) energies are considered separately.
Accuracy of measurements (including sensors)
■ voltage (V) 0.5 \%
- current (A) 1.5 \%
- frequency $(\mathrm{Hz}) 0.1 \%$

■ power (W) and energy (Wh) 2 \%.

Stored information

The fine setting adjustments, the last 100 events and the maintenance register remain in the control-unit memory even when power is lost.

Time-stamping

Time-stamping is activated as soon as time is set manually or by a supervisor. No external power supply module is required (max. drift of 1 hour per year).

Reset

An individual reset, via the keypad or remotely, acts on alarms, minimum and maximum data, peak values, the counters and the indicators.

Micrologic H control units include all the functions offered by Micrologic P. Integrating significantly enhanced calculation and memory functions, the Micrologic H control unit offers in-depth analysis of power quality and detailed event diagnostics. It is intended for operation with a supervisor.

In addition to the Micrologic P functions, the Micrologic \mathbf{H} control unit offers:

- in-depth analysis of power quality including calculation of harmonics and the
fundamentals
■ diagnostics aid and event analysis through waveform capture
■ enhanced alarm programming to analyse and track down a disturbance on the AC power system.

Measurements

\qquad (1)

The Micrologic H control unit offers all the measurements carried out by Micrologic P , with in addition:
■ phase by phase measurements of:

- power, energy
- power factors
- calculation of:
- current and voltage total harmonic distortion (THD)
\square current, voltage and power fundamentals
- current and voltage harmonics up to the 31st order.

Instantaneous values displayed on the screen

Currents					
1 rms	A	1	2	3	N
	A	E-fault		E-leakage	
1 max rms	A	1	2	3	N
	A	E-fault		E-leakage	
Voltages					
U rms	V	12	23	31	
V rms	V	1N	2N	3N	
U average rms	V	(U12 + U23 + U31) / 3			
U unbalance	\%				
Power, energy					
P active, Q reactive, S apparent	W, Var, VA	Totals	1	2	3
E active, E reactive, E apparent	Wh, VARh, VAh	Totals consumed - supplied Totals consumed Totals supplied			
Power factor	PF	Total	1	2	3
Frequencies					
F	Hz				
Power-quality indicators					
Total fundamentals		U I P Q S			
THD	\%				
U and Iharmonics	Amplitude	357	911		

Harmonics 3, 5, 7, 9, 11 and 13, monitored by electrical utilities, are displayed on the screen.
Demand measurements
Similar to the Micrologic P control unit, the demand values are calculated over a fixed or sliding time window that may be set from 5 to 60 minutes

Currents					
I demand	A	1	2	3	N
	A	E-fault		E-leakage	
1 max demand	A	1	2	3	N
	A	E-fault		E-leakage	
Power					
P, Q, S demand	W, Var, VA	Totals			
$\underline{P, Q, S ~ m a x ~ d e m a n d ~}$	W, Var, VA	Totals			

Maximeters

Only the current maximeters may be displayed on the screen.
Histories and maintenance indicators
These functions are identical to those of the Micrologic P.

Display of harmonics up to 21th order.

Waveform capture.

Log.

With the communication option

Additional measurements, maximeters and minimeters
Certain measured or calculated values are only accessible with the COM communication option:
■ I peak / $\sqrt{2}\left(I_{1}+I_{2}+I_{3}\right) / 3$, $l_{\text {unbalance }}$
■ load level in \% Ir

- power factor (total and per phase)

■ voltage and current THD

- K factors of currents and average K factor

■ crest factors of currents and voltages

- all the fundamentals per phase

■ fundamental current and voltage phase displacement

- distortion power and distortion factor phase by phase

■ amplitude and displacement of current and voltage harmonics 3 to 31 .
The maximeters and minimeters are available only via the COM option for use with a supervisor

Waveform capture

The Micrologic H control unit stores the last 4 cycles of each instantaneous current or voltage measurement. On request or automatically on programmed events, the control unit stores the waveforms. The waveforms may be displayed in the form of oscillograms by a supervisor via the COM option. Definition is 64 points per cycle.
Pre-defined analogue alarms (1 to 53)
Each alarm can be compared to user-set high and low thresholds. Overrun of a threshold generates an alarm. An alarm or combinations of alarms can be linked to programmable action such as selective recording of measurements in a log, waveform capture, etc.

Event log and maintenance registers

The Micrologic H offers the same event log and maintenance register functions as the Micrologic P. In addition, it produces a log of the minimums and maximums for each "real-time" value.

Additional technical characteristics

Setting the display language

System messages may be displayed in six different languages. The desired language is selected via the keypad.
Protection functions
All current-based protection functions require no auxiliary source. Voltage-based protection functions are connected to AC power via a voltage measurement input built into the circuit breaker.

Measurement functions

Measurement functions are independent of the protection functions.
The high-accuracy measurement module operates independently of the protection module, while remaining synchronised with protection events

Measurement-calculation mode

An analogue calculation function dedicated to measurements enhances the accuracy of harmonic calculations and the power-quality indicators. The Micrologic H control unit calculates electrical magnitudes using $1.5 \mathrm{x} \ln$ dynamics (20 x In for Micrologic P).
Measurement functions implement the new "zero blind time" concept Energies are calculated on the basis of the instantaneous power values, in the traditional and signed modes.
Harmonic components are calculated using the discrete Fourier transform (DFT).

Accuracy of measurements (including sensors)

■ voltage (V) 0.5 \%
■ current (A) 1.5 \%
■ frequency (Hz) 0.1 \%
■ power (W) and energy (Wh) 2 \%

- total harmonic distortion 1 \%

Stored information

The fine-setting adjustments, the last 100 events and the maintenance register remain in the control-unit memory even when power is lost.

Time-stamping

Time-stamping is activated as soon as time is set manually or by a supervisor no external power supply module is required (max. drift of 1 hour per year).

Reset

An individual reset, via the keypad or remotely, acts on alarms, minimum and maximum data, peak values, the counters and the indicators.

External sensor (CT).

Rectangular sensor.

External sensor for source ground return protection.

External sensors

External sensor for earth-fault and neutral protection
The sensors, used with the 3P circuit breakers, are installed on the neutral conductor for:
■ neutral protection (with Micrologic P and H)
■ residual type earth-fault protection (with Micrologic A, P and H)..
The rating of the sensor (CT) must be compatible with the rating of the circuit breaker:
■ NT06 to NT16: TC 400/1600
■ NW08 to NW20: TC 400/2000
■ NW25 to NW40: TC 1000/4000
■ NW40b to NW63: TC 2000/6300.
For oversized neutral protection the sensor rating must be compatible with the measurement range: $1.6 \times \mathrm{IN}$ (available up to NW 40 and NT 16).

Rectangular sensor for earth-leakage protection

The sensor is installed around the busbars (phases + neutral) to detect the zerophase sequence current required for the earth-leakage protection. Rectangular sensors are available in two sizes.
Inside dimensions (mm)

- 280×115 up to 1600 A for Masterpact NT and NW

■ 470×160 up to 4000 A for Masterpact NW.

External sensor for source ground return protection

The sensor is installed around the connection of the transformer neutral point to earth and connects to the Micrologic 6.0 control unit via an MDGF module to provide the source ground return (SGR) protection.

Voltage measurement inputs

Voltage measurement inputs are required for power measurements (Micrologic P or H) and for earth-leakage protection (Micrologic 7...).
As standard, the control unit is supplied by internal voltage measurement inputs placed downstream of the pole for voltages between 220 and 690 V AC. On request, it is possible to replace the internal voltage measurement inputs by an external voltage input (PTE option) which enables the control unit to draw power directly from the distribution system upstream of the circuit breaker. An 3 m cable with ferrite comes with this PTE option.

Long-time rating plug

Four interchangeable plugs may be used to limit the long-time threshold setting range for higher accuracy.
The time delay settings indicated on the plugs are for an overload of $6 \operatorname{lr}$ (for further details, see the characteristics on pages 25 and 27).
As standard, control units are equipped with the 0.4 to 1 plug.

Setting ranges

Standard	$\mathrm{Ir}=\ln \times \ldots$	0.4	0.5	0.6	0.7	0.8	0.9	0.95	0.98	1
Low-setting option	$\mathrm{Ir}=\ln \times \ldots$	0.4	0.45	0.50	0.55	0.60	0.65	0.70	0.75	0.8
High-setting option	$\mathrm{Ir}=\ln \times \ldots$	0.80	0.82	0.85	0.88	0.90	0.92	0.95	0.98	1
Off plug	No long-time protection (Ir $=\ln$ for Isd setting)									
Important: long-time rating plugs must always be removed before carrying out insulation or dielectric withstand tests.										

External 24 V DC power-supply module

The external power-supply module makes it possible to use the display even if the circuit breaker is open or not supplied (for the exact conditions of use, see the "electrical diagrams" part of this catalogue).
This module powers both the control unit (100 mA) and the M2C and M6C programmable contacts (100 mA).
With the Micrologic A control unit, this module makes it possible to display currents of less than 20% of In .
With the Micrologic P and H, it can be used to display fault currents after tripping.

Characteristics

- power supply:

- 110/130, 200/240, 380/415 V AC (+ $10 \%-15 \%$)
- 24/30, 48/60, 100/125 V DC (+20 \% -20 \%)
output voltage: 24 V DC $\pm 5 \%, 200 \mathrm{~mA}$; towards the end of 2004 , the available output current will be increased from 200 mA to 1 A
■ ripple < 1 \%
■ dielectric withstand : 3.5 kV rms between input/output, for 1 minute
- overvoltage category: as per IEC 60947-1 cat. 4.

Battery module

The battery module makes it possible to use the display even if the power supply to the Micrologic control unit is interrupted and still commucating with the supervisor.

Characteristics

■ battery run-time: 12 hours (approximately)

- mounted on vertical backplate or symmetrical rail.

M2C, M6C programmable contacts
These contacts are optional equipment for the Micrologic P and H control units.
They are described with the indication contacts for the circuit breakers.

Characteristics			M2C/M6C
Minimum load		$10 \mathrm{~mA} / 24 \mathrm{~V}$	
Breaking capacity (A)	V AC	240	5
p.f.: 0.7	380	1.8	
		24	1.5
	V DC	48	0.4
		125	0.15

M2C: 24 V DC power supplied by control unit (consumption 100 mA).
M6C: external 24 V DC power supply required (consumption 100 mA).

Lead-seal cover.

Spare parts

Lead-seal covers

A lead-seal cover controls access to the adjustment dials.
When the cover is closed:
\square it is impossible to modify settings using the keypad unless the settings lockout pin on the cover is removed

- the test connector remains accessible
- the test button for the earth-fault and earth-leakage protection function remains accessible.

Characteristics

- transparent cover for basic Micrologic and Micrologic A control units

■ non-transparent cover for Micrologic P and H control units.

Spare battery

A battery supplies power to the LEDs identifying the tripping causes. Battery service life is approximately ten years.
A test button on the front of the control unit is used to check the battery condition.
The battery may be replaced on site when discharged.

[^2]
Test equipment

Hand-held test kit

The hand-held mini test kit may be used to:
■ check operation of the control unit and the tripping and pole-opening system by sending a signal simulating a short-circuit
■ supply power to the control units for settings via the keypad when the circuitbreaker is open (Micrologic P and H control units).
Power source: standard LR6-AA battery.

Full function test kit

The test kit can be used alone or with a supporting personal computer.
The test kit without PC may be used to check:
\square the mechanical operation of the circuit breaker
\square the electrical continuity of the connection between the circuit breaker and the control unit
■ operation of the control unit:

- display of settings
\square automatic and manual tests on protection functions
\square test on the zone-selective interlocking (ZSI) function
\square inhibition of the earth-fault protection
\square inhibition of the thermal memory.
The test kit with PC offers in addition:
- the test report (software available on request).

Functions and characteristics

Communication
 COM option in Masterpact

The COM option is required for integration of the circuit breaker or switch-disconnector in a supervision system.
Masterpact uses the Digipact or Modbus communications protocol for full compatibility with the SMS PowerLogic electrical-installation management systems. An external gateway is available for communication on other networks:

■ Profibus

■ Ethernet..
Eco COM is limited to the transmission of metering data and does not allow the control of the circuit breaker.

Modbus "device" communication module.

Modbus "chassis" communication module.

For fixed devices, the COM option is made up of:
■ a "device" communication module, installed behind the Micrologic control unit and supplied with its set of sensors (OF, SDE ,PF and CH micro-contacts) and its kit for connection to XF and MX1 communicating voltage releases.
For drawout devices, the COM option is made up of:
■ a "device" communication module, installed behind the Micrologic control unit and supplied with its set of sensors (OF, SDE, PF and CH micro-contacts) and its kit for connection to XF and MX1 communicating voltage releases
■ a "chassis" communication module supplied separately with its set of sensors (CE, CD and CT contacts).
Status indication by the COM option is independent of the device indication contacts. These contacts remain available for conventional uses.

Digipact or Modbus "Device" communication module

This module is independent of the control unit. It receives and transmits information on the communication network. An infra-red link transmits data between the control unit and the communication module.
Consumption: $30 \mathrm{~mA}, 24 \mathrm{~V}$.

Digipact or Modbus "chassis" communication module

This module is independent of the control unit. With Modbus "chassis" communication module, this module makes it possible to address the chassis and to maintain the address when the circuit breaker is in the disconnected position.
Consumption: $30 \mathrm{~mA}, 24 \mathrm{~V}$.

XF and MX1 communicating voltage releases

The XF and MX1 communicating voltage releases are equipped for connection to the "device" communication module.
The remote-tripping function (MX 2 or MN) are independent of the communication option. They are not equipped for connection to the "device" communication module.

Communication Overview of functions

The Masterpact circuit breakers and switch-disconnectors are compatible with the Digipact or Modbus COM option.
The COM option may be used to:
■ identify the device

- indicate status conditions
- control the device.

Depending on the different types of Micrologic (A, P, H) control units, the COM option also offers:

- setting of the protection and alarms functions
- analysis of the AC-power parameters for operating-assistance and maintenance purposes.

	Switch-disconnector with communication bus		Circuit breaker with communication bus					
	Digipact	Modbus		ipac			dbu	
Device identification								
Address	\square	\square	A	P	H	A	P	H
Rating	-	-	A	P	H	A	P	H
Type of device	-	-					P	H
Type of control unit	-	-	A	P	H	A	P	H
Type of long-time rating plug	-	-	A	P	H	A	P	H
Signalisation d'états								
ON/OFF OF	\square	\square	A	P	H	A	P	H
Spring charged CH	\square	\square	A	P	H	A	P	H
Ready to close PF	\square	\square	A	P	H	A	P	H
Fault-trip SDE	-	-	A	P	H	A	P	H
Connected/disconnected/ test position CE/CD/CT	-	\square	A	P	H	A	P	H
Controls								
ON/OFF MX/XF	-	\square	A	P	H	A	P	H
Spring charging	-	-						
Reset of the mechanical indicator	-	-						
Protections and alarms settings								
Reading of protections setting			A	P	H	A	P	H
Writing of fine settings in the imposed by the adjustment diad							P	H
Reading/writing of alarms (load shedding and reconnect	M2C, etc.)						P	H
Reading/writing of custom ala	rms							H
Operating and maintenance aids								
Measurement								
Current			A	P	H	A	P	H
Voltages, frequency, power,					H		P	H
Power quality: fundamental, h	harmonics							H
Programming of demand met	ering						P	H
Fault readings								
Type of fault						A	P	H
Interrupted current							P	H
Waveform capture								
On faults								H
On demand or programmed								H
Histories and logs								
Trip history							P	H
Alarm history							P	H
Event logs							P	H
Indicators								
Counter operation			A	P	H	A	P	H
Contact wear							P	H
Maintenance register							P	H

Note: see the description of the Micrologic control units for further details on protection and alarms, measurements, waveform capture, histories, logs and maintenance indicators.

Communication Masterpact in a communication network

Devices

Circuit breakers equipped with Micrologic control units may be connected to either a Digipact or Modbus communication bus. The information made available depends on the type of Micrologic control unit (A, P or H) and on the type of communication bus (Digipact or Modbus).
Switch-disconnectors can be connected to the Digipact or Modbus communication bus. The information made available is the status of the switch-disconnector.

Communication bus

Digipact bus

The Digipact bus is the internal bus of the low-voltage switchboard in which the Digipact communicating devices are installed (Masterpact with Digipact COM, PM150, SC150, UA150, etc.). This bus must be equipped with a DC150 data concentrator (see the Powerlogic System catalogue).

Addresses

Addressing is carried out by the DC150 data concentrator.

Number of devices

The maximum number of devices that may be connected to the Digipact bus is calculated in terms of "communication points". These points correspond to the amount of traffic the bus can handle. The total number of points for the various devices connected to a single bus must not exceed 100.
If the required devices represent more than 100 points, add a second Digipact internal bus.

Communicating device	Number of points
DC150 data concentrator	4
Micrologic + Digipact COM	4
PM150	4
SC150	4
UA150	4

Length of bus

The maximum recommended length for the Digipact internal bus is 200 meters.

Bus power source

Power is supplied by the DC150 data concentrator (24 V).

Communication
 Masterpact in a communication network

Modbus bus

The Modbus RS485 (RTU protocol) system is an open bus on which communicating Modbus devices (Masterpact with Modbus COM, PM300, Sepam, Vigilohm, etc.) are installed. All types of PLCs and microcomputers may be connected to the bus.

Addresses

The Modbus parameters (address, baud rate, parity) are entered using the keypad on the Micrologic A, P or H. For a switch-disconnector, it is necessary to use the RSU (Remote Setting Utility) Micrologic utility.
The software layer of the Modbus protocol can manage up to 255 addresses (1 to 255).
The "device" communication module comprises three addresses linked to:
■ circuit-breaker manager

- measurement manager
- protection manager

The "chassis" communication module comprises one address linked to:
\square the chassis manager.
The division of the system into four managers secures data exchange with the supervision system and the circuit-breaker actuators.
The manager addresses are automatically derived from the circuit-breaker address @xx entered via the Micrologic control unit (the default address is 47).

Logic addresses

$@ x x$	Circuit-breaker manager	$(1$ to 47$)$
$@ x x+50$	Chassis manager	$(51$ to 97$)$
$@ x x+200$	Measurement managers	$(201$ to 247$)$
$@ x x+100$	Protection manager	$(101$ to 147$)$

Number of devices

The maximum number of devices that may be connected to the Modbus bus depends on the type of device (Masterpact with Modbus COM, PM500, Sepam, Vigilohm, etc.), the baud rate (19200 is recommended), the volume of data exchanged and the desired response time. The RS485 physical layer offers up to 32 connection points on the bus (1 master, 31 slaves).
A fixed device requires only one connection point (communication module on the device).
A drawout device uses two connection points (communication modules on the device and on the chassis).
The number must never exceed 31 fixed devices or 15 drawout devices.

Length of bus

The maximum recommended length for the Modbus bus is 1200 meters.
Bus power source
A 24 V DC power supply is required (less than 20 \% ripple, insulation class II).

Communication interface

The Modbus bus may be connected to the central processing device in any of three manners
■ direct link to a PLC. The communication interface is not required if the PLC is equipped with a Modbus port
■ direct link to a computer. The Modbus (RS485) / Serial port (RS232)
communication interface is required
■ connection to a TCP/IP (Ethernet) network. The Modbus (RS485) / TCP/IP
(Ethernet) communication interface is required.

Software

To make use of the information provided by the communicating devices, software with a Modbus driver must be used.

Micrologic utilities

This is a set of software that may be used with a PC to:
\square display the variables (I, U, P, E, etc.) with the RDU (Remote Display Utility)
\square read/write the settings with the RSU (Remote Setting Utility)

- remotely control (ON / OFF) the device with the RCU (Remote Control Utility). Micrologic utilities are available upon request

SMS (System Manager Software)

SMS is a software to monitor LV and/or MV electrical energy.
The SMS family includes a software range depending on the application and function, from single product monitoring to the management of a multiple building:

- Power Meter and Circuit Monitor units

■ LV devices

- Sepam units.

Communication

 Masterpact and the MPS100 Micro Power ServerThe MPS100 Micro Power Server: - notifies maintenance staff when any preset alarm or trip is activated by the Micrologic trip unit, automatically sending an e-mail and/or SMS - data logs are periodically forwarded by e-mail
the e-mails are sent via an Ethernet local area network (LAN) or remotely via modem.

MPS100 Micro Power Server.

Main LV switchboard.

Monitoring of your main LV switchboard via embedded web pages in the MPS100 accessible with a standard web browser.

Micro Power Server makes data collection easy for monitoring Masterpact/Compact circuit breakers

Now, more than ever, there is a need to monitor electrical distribution systems in industrial and large commercial applications. The key to managing all equipment, maximising efficiencies, reducing costs and increasing up time is having the right tools.
Micro Power Server MPS100 is designed to withstand harsh electrical environments and provide a consistent flow of easy to interpret information.

Micro Power Server is designed for unattended operation within the main LV switchboard

The MPS100 is a self-contained facility information server that serves as a standalone device for power system monitoring.
It is used to transfer power system information via a standard web browser over an Ethernet local area network (LAN) or via modem, making it possible to view power system information on a PC with an Ethernet connection.
In either capacity, the Micro Power Server functions as a web server for Micrologic trip unit and Power Meter (PM500) supervision, automatically notifying (e-mail and/or SMS) maintenance staff when any preset alarm or trip is activated in the Micrologic trip unit.

Benefits

■ view your main LV switchboard without installing software on your local PC, eliminating the need for a dedicated PC with specific software
■ Micro Power Server allows centralised monitoring, so you no longer waste
precious time walking around the facility to collect data
■ view your main LV switchboard via a modem connection (GSM or switched network), avoiding the need for a LAN
■ maintenance people are automatically notified at any time, wherever they are, so you do not have to stay in front of a monitor all day long
■ data logs can be periodically forwarded by sending e-mails to the relevant people (maintenance, accounting, application service provider) automatically

- possibility to monitor/notify six external events (limit switches, auxiliary switches...) ■ back-up of Micrologic trip unit settings in the memory of the MPS100, so you know where to retrieve it when necessary.

Communication
 Masterpact and the MPS100
 Micro Power Server

[^3]
Functions and characteristics

Connections

Overview of solutions

Three types of connection are available: ■ vertical or horizontal rear connection - front connection

- mixed connection.

The solutions presented are similar in principle for all Masterpact NT and NW fixed and drawout devices.

Simply turn a horizontal rear connector 90° to make it a vertical connector. For the 6300 A circuit breaker, only vertical connection is available.

Front connection

Front connection is available for NW fixed and drawout versions up to 3200 A.

Mixed connection

$\overline{\text { Note: Masterpact circuit breakers can be connected indifferently with bare-copper, tinned-copper }}$ and tinned-aluminium conductors, requiring no particular treatment.

Connections
 Optional accessories

Type of accessory	Masterpact NT06 to NT16 Fixed Front \| Rear	Drawou Fro	$\left.\right\|_{\text {Roar }} ^{\text {comection }}$	Masterpact Fixed Fron		Drawout Front	
	5	19					
$\underset{\substack{\text { cabie lus } \\ \text { adapers }}}{\text { a }}$	0	10					
$\underset{\substack{\text { Interphase } \\ \text { bariess }}}{\substack{\text { a }}}$							
$\overline{\text { Spreaders }}$	Find						
$\begin{aligned} & \text { Disconnectable } \\ & \text { front-connection } \\ & \text { adapter } \end{aligned}$					边		
$\pm \substack{\text { Sataty shuters } \\ \text { with paliocking }}$? 11
$\begin{aligned} & \text { Shutter position } \\ & \text { indication and } \\ & \text { locking } \end{aligned}$							$+x$
Arc chute screen	$\overbrace{(3)}^{2}$						

(1) Mandatory for voltages $>500 \mathrm{~V}$.
(2) Except for an NW40 equipped for horizontal rear connection, and for fixed NW40b-NW63.
(3) Mandatory for 1000 V and for fixed NT front-connection versions with vertical-connection adapters oriented towards the front.
(4) Mandatory for 1000 V .

Masterpact M replacement kit

A set of connection parts is available to allow replacement of a Masterpact M08 to M32 circuit breaker by a Masterpact NW without modifying the busbars (please consult us).

Mounting on a switchboard backplate using special brackets
Masterpact NT and NW fixed front-connected circuit breakers can be installed on a backplate without any additional accessories.
Masterpact NW circuit breakers require a set of special brackets.

Vertical-connection adapters

Mounted on front-connected devices or chassis, the adapters facilitate connection to a set of vertical busbars.

Cable-Iug adapters

Cable-lug adapters are used in conjunction with vertical-connection adapters.
They can be used to connect a number of cables fitted with lugs.
To ensure adequate mechanical strength, the connectors must be secured together via spacers (catalogue number 07251).

Interphase barriers

These barriers are flexible insulated partitions used to reinforce isolation of connection points in installations with busbars, whether insulated or not. For Masterpact NT/NW devices, they are installed vertically between rear connection terminals. They are mandatory for NT devices at voltages $>500 \mathrm{~V}$.

Spreaders

Mounted on the front or rear connectors, spreaders are used to increase the distance between bars in certain installation configurations.

Arc chute screen

For fixed Masterpact NT front-connection versions and with vertical-connection adapters oriented towards the front, an arc chute screen must be installed to respect safety clearances.

For Masterpact NT 1000 V, an arc chute screen must be installed to respect safety clearances.

Connections
 Optional accessories

Disconnectable front-connection adapter

Mounted on a fixed front-connected device, the adapter simplifies replacement of a fixed device by enabling fast disconnection from the front.

Safety shutters

Mounted on the chassis, the safety shutters automatically block access to the disconnecting contact cluster when the device is in the disconnected or test positions (degree of protection IP 20) When the device is removed from its chassis, no live parts are accessible.
The shutter-locking system is made up of a moving block that can be padlocked (padlock not supplied). The block:

- prevents connection of the device
- locks the shutters in the closed position.

For Masterpact NW08 to NW63

A support at the back of the chassis is used to store the blocks when they are not used:
■ 2 blocks for NW08 to NW40
■ 4 blocks for NW4Ob to NW63.

Shutter position indication and locking on front face

This option located on the chassis front plate indicates that the shutters are closed. It is possible to independently or separately padlock the two shutters using one to three padlocks (not supplied).

Access to pushbuttons protected by transparent cover.

Pushbutton locking using a padlock.

OFF position locking using a padlock.

[^4]

Pushbutton locking

The transparent cover blocks access to the pushbuttons used to open and close the device.
It is possible to independently lock the opening button and the closing button.
The locking device is often combined with a remote operating mechanism.
The pushbuttons may be locked using either:
■ three padlocks (not supplied)

- lead seal
- two screws.

Device locking in the OFF position

The circuit breaker is locked in the OFF position by physically maintaining the opening pushbutton pressed down:
■ using padlocks (one to three padlocks, not supplied)

- using keylocks (one or two different keylocks, supplied).

Keys may be removed only when locking is effective (Profalux or Ronis type locks). The keylocks are available in any of the following configurations:
■ one keylock
■ one keylock mounted on the device + one identical keylock supplied separately for interlocking with another device

- two different key locks for double locking.

Profalux and Ronis keylocks are compatible with each other.
A locking kit (without locks) is available for installation of one or two keylocks (Ronis, Profalux, Kirk or Castell).

Accessory-compatibility

For Masterpact NT: 3 padlocks or 1 keylock
For Masterpact NW: 3 padlocks and/or 2 keylocks

Cable-type door interlock

This option prevents door opening when the circuit breaker is closed and prevents circuit breaker closing when the door is open.
For this, a special plate associated with a lock and a cable is mounted on the right side of the circuit breaker.
With this interlock installed, the source changeover function cannot be implemented.

"Disconnected" position locking by padlocks.

"Disconnected" position locking by keylocks.

Door interlock.

Racking interlock.

[^5]
"Disconnected" position locking

Mounted on the chassis and accessible with the door closed, these devices lock the circuit breaker in the "disconnected" position in two manners:
■using padlocks (standard), up to three padlocks (not supplied)

- using keylocks (optional), one or two different keylocks are available.

Profalux and Ronis keylocks are available in different options:

- one keylock
- two different keylocks for double locking
- one (or two) keylocks mounted on the device + one (or two) identical keylocks supplied separately for interlocking with another device.
A locking kit (without locks) is available for installation of one or two keylocks (Ronis, Profalux, Kirk or Castell).
"Connected", "disconnected" and "test" position locking
The "connected", "disconnected" and "test" positions are shown by an indicator. The exact position is obtained when the racking handle blocks. A release button is used to free it.
On request, the "disconnected" position locking system may be modified to lock the circuit breaker in any of the three positions, "connected", "disconnected" and "test".

Door interlock catch

Mounted on the right or left-hand side of the chassis, this device inhibits opening of the cubicle door when the circuit breaker is in "connected" or "test" position. It the breaker is put in the "connected" position with the door open, the door may be closed without having to disconnect the circuit breaker.

Racking interlock

This device prevents insertion of the racking handle when the cubicle door is open.

Cable-type door interlock

This option is identical for fixed and drawout versions.

Racking interlock between crank and OFF pushbutton

This option makes it necessary to press the OFF pushbutton in order to insert the racking handle and holds the device open until the handle is removed.

Automatic spring discharge before breaker removal

This option discharges the springs before the breaker is removed from the chassis.

Mismatch protection

Mismatch protection ensures that a circuit breaker is installed only in a chassis with compatible characteristics. It is made up of two parts (one on the chassis and one on the circuit breaker) offering twenty different combinations that the user may select.

Indication contacts are available: ■ in the standard version for relay applications
■ in a low-level version for control of PLCs and electronic circuits.
M2C and M6C contacts may be
programmed via the Micrologic P and H control units.

ON/OFF indication contacts (OF) (rotary type).

ON/OFF indication contacts (OF) (microswitch type).

Additional "fault-trip" indication contacts (SDE).

ON/OFF indication contacts (OF)

Two types of contacts indicate the ON or OFF position of the circuit breaker:
■ microswitch type changeover contacts for Masterpact NT

- rotary type changeover contacts directly driven by the mechanism for Masterpact NW. These contacts trip when the minimum isolation distance between the main circuit-breaker contacts is reached.

OF			NT	NW
Supplied as standard			4	4
Maximum number			4	12
Breaking capacity (A)	Standard		Minim	$100 \mathrm{~mA} / 24 \mathrm{~V}$
p.f.: 0.3	V AC	240/380	6	10/6 ${ }^{(1)}$
AC12/DC12		480	6	10/6 ${ }^{(1)}$
		690	6	6
	V DC	24/48	2.5	10/6 ${ }^{(1)}$
		125	0.5	10/6 ${ }^{(1)}$
		250	0.3	3
	Low-level		Minim	$2 \mathrm{~mA} / 15 \mathrm{~V}$ DC
	V AC	24/48	5	6
		240	5	6
		380	5	3
	V DC	24/48	5/2.5	6
		125	0.5	6
		250	0.3	3

(1) Standard contacts: 10 A; optional contacts: 6 A.
"Fault-trip" indication contacts (SDE)
Circuit-breaker tripping due to a fault is signalled by:

- a red mechanical fault indicator (reset)

■ one changeover contact (SDE).
Following tripping, the mechanical indicator must be reset before the circuit breaker may be closed.

SDE			
Supplied as standard			1
Maximum number Breaking capacity (A) p.f.: 0.3 AC12/DC12			2
	Standard		Minimum load: $100 \mathrm{~mA} / 24 \mathrm{~V}$
	V AC	240/380	5
		480	5
		690	3
	V DC	24/48	3
		125	0.3
		250	0.15
	Low-level		Minimum load: $2 \mathrm{~mA} / 15 \mathrm{~V}$ DC
	V AC	24/48	3
		240	3
		380	3
	V DC	24/48	3
		125	0.3
		250	0.15

Combined "connected/closed" contacts (EF)

The contact combines the "device connected" and the "device closed" information to produce the "circuit closed" information.
Supplied as an option for Masterpact NW, it is mounted in place of the connector of an additional OF contact.

EF			NW
Maximum number			8
Breaking capacity (A)	Standard		Minimum load: $100 \mathrm{~mA} / 24 \mathrm{~V}$
p.f.: 0.3	V AC	240/380	6
AC12/DC12		480	6
		690	6
	V DC	24/48	2.5
		125	0.8
		250	0.3
	Low-level		Minimum load: $2 \mathrm{~mA} / 15 \mathrm{~V}$ DC
	V AC	24/48	5
		240	5
		380	5
	V DC	24/48	2.5
		125	0.8
		250	0.3

CCE, CD and CT "connected/disconnected/test" position carriage switches.

M2C programmable contacts: circuit-breaker internal relay with two contacts.

M6C programmable contacts: circuit-breaker external relay with six independent changeover contacts controlled from the circuit breaker via a three-wire connection.

"Connected", "disconnected" and "test" position carriage switches

Three series of optional auxiliary contacts are available for the chassis:
■ changeover contacts to indicate the "connected" position (CE)
\square changeover contacts to indicate the "disconnected" position (CD). This position is indicated when the required clearance for isolation of the power and auxiliary circuits is reached
■ changeover contacts to indicate the "test" position (CT). In this position, the power circuits are disconnected and the auxiliary circuits are connected.

Additional actuators

A set of additional actuators may be installed on the chassis to change the functions of the carriage switches.

M2C / M6C programmable contacts

These contacts, used with the Micrologic P and H control units, may be programmed via the control unit keypad or via a supervisory station with the COM communication option. They require an external power supply module.
They indicate:

- the type of fault

■ instantaneous or delayed threshold overruns.

- They may be programmed:

■ with instantaneous return to the initial state
■ without return to the initial state

- with return to the initial state following a delay.

Characteristics			M2C/M6C
Minimum load		$100 \mathrm{~mA} / 24 \mathrm{~V}$	
Breaking capacity (A)	V AC	240	5
p.f.: 0.7		380	3
	VDC	24	1.8
		48	1.5
		125	0.4
		250	0.15

[^6]M6C: external 24 V DC power supply required (consumption 100 mA).

Functions
and characteristics

Remote operation Remote ON / OFF

Two solutions are available for remote operation of Masterpact devices:

- a point-to-point solution

■ a bus solution with the COM
communication option.

Note: an opening order always takes priority over a closing order

If opening and closing orders occur simultaneously, the mechanism discharges without any movement of the main contacts. The circuit breaker remains in the open position (OFF).
In the event of maintained opening and closing orders, the standard mechanism provides an anti-pumping function by blocking the main contacts in open position.
Anti-pumping function. After fault tripping or intentional opening using the manual or electrical controls, the closing order must first be discontinued, then reactivated to close the circuit breaker.
When the automatic reset after fault trip (RAR) option is installed, to avoid pumping following a fault trip, the automatic control system must take into account the information supplied by the circuit breaker before issuing a new closing order or blocking the circuit breaker in the open position (information on the type of fault, e.g. overload, short-time fault, earth fault, earth leakage, short-circuit, etc.).

Note: MX communicating releases are of the impulse type only and cannot be used to lock a circuit breaker in OFF position. For locking in OFF position, use the remote tripping function (2nd MX or MN).

When MX or XF communicating releases are used, the third wire (C3, A3) must be connected even if the communication module is not installed. When the control voltage (C3-C1 or A3A1) is applied to the MX or XF releases, it is necessary to wait 1.5 seconds before issuing an order. Consequently, it is advised to use standard MX or XF releases for applications such as source-changeover systems.

The remote ON / OFF function is used to remotely open and close the circuit breaker. It is made up of:
■ an electric motor (MCH) equipped with a "springs charged" limit switch contact
(CH)
■ two voltage releases:
\square a closing release (XF)
\square an opening release (MX).
Optionally, other functions may be added:
■ a "ready to close" contact (PF)

- an electrical closing pushbutton (BPFE)

■ remote reset following a fault.

A remote-operation function is generally combined with:
■ device ON / OFF indication (OF)
■ "fault-trip" indication (SDE).

Wiring diagram of a point-to-point remote ON / OFF function

Wiring diagram of a bus-type remote ON / OFF function

Remote operation Remote ON / OFF

Electric motor (MCH)

The electric motor automatically charges and recharges the spring mechanism when the circuit breaker is closed. Instantaneous reclosing of the breaker is thus possible following opening. The spring-mechanism charging handle is used only as a backup if auxiliary power is absent.
The electric motor (MCH) is equipped as standard with a limit switch contact (CH) that signals the "charged" position of the mechanism (springs charged).

Characteristics

| Power supplyV AC 50/60 Hz
 V DC | $48 / 60-100 / 130-200 / 240-277-380 / 415-400 / 440-480$
 $24 / 30-48 / 60-100 / 125-200 / 250$ |
| :--- | :--- | :--- |
| Operating threshold | 0.85 to 1.1 Un |
| Consumption (VA or W) | 180 |
| Motor overcurrent | 2 to 3 In for 0.1 s |
| Charging time | maximum 3 s for Masterpact NT

 maximum 4 s for Masterpact NW |
| Operating frequency | maximum 3 cycles per minute |
| CH contact | 10 A at 240 V |

Voltage releases (XF and MX)

Their supply can be maintained or automatically disconnected.

Closing release (XF)

The XF release remotely closes the circuit breaker if the spring mechanism is charged.
Opening release (MX)
The MX release instantaneously opens the circuit breaker when energised. It locks the circuit breaker in OFF position if the order is maintained (except for MX "communicating" releases).
Note: whether the operating order is maintened or automatically disconnected (pulse-type), XF or MX "communicating" releases ("bus" solution with "COM" communication option) always have an impulse-type action (see diagram).

| Characteristics | XF | MX |
| :--- | :--- | :--- | :--- |
| Power supply | V AC $50 / 60 \mathrm{~Hz}$ | $24-48-100 / 130-200 / 250-277-380 / 480$ |
| | V DC | $12-24 / 30-48 / 60-100 / 130-200 / 250$ |
| Operating threshold | 0.85 to 1.1 Un | 0.7 to 1.1 Un |
| Consumption (VA or W) | Hold: 4.5 | Hold: 4.5 |
| | Pick-up: $200(200 \mathrm{~ms})$ | Pick-up: $200(200 \mathrm{~ms})$ |
| Circuit-breaker response time at Un | $55 \mathrm{~ms} \pm 10($ Masterpact NT $)$ | $50 \mathrm{~ms} \pm 10$ |
| | $70 \mathrm{~ms} \pm 10(\mathrm{NW} \leqslant 4000 \mathrm{~A})$ | |
| | $80 \mathrm{~ms} \pm 10(\mathrm{NW}>4000 \mathrm{~A})$ | |

"Ready to close" contact (PF)

The "ready to close" position of the circuit breaker is indicated by a mechanical indicator and a PF changeover contact. This signal indicates that all the following are valid:
\square the circuit breaker is in the OFF position

- the spring mechanism is charged

■ a maintained opening order is not present:

- MX energised
- fault trip
- remote tripping (second MX or MN)
\square device not completely racked in
\square device locked in OFF position
\square device interlocked with a second device.

Characteristics			NT/NW
Maximum number			1
Breaking capacity (A)	Standard		Minimum load: $100 \mathrm{~mA} / 24 \mathrm{~V}$
p.f.: 0.3	V AC	240/380	5
AC12/DC12		480	5
		690	3
	$\overline{\mathrm{V}} \mathrm{DC}$	24/48	3
		125	0.3
		250	0.15
	Low-level		Minimum load: $2 \mathrm{~mA} / 15 \mathrm{~V}$ DC
	V AC	24/48	3
		240	3
		380	3
	V DC	24/48	3
		125	0.3
		250	0.15

Electrical closing pushbutton (BPFE)

Located on the front panel, this pushbutton carries out electrical closing of the circuit breaker. It is generally associated with the transparent cover that protects access to the closing pushbutton.
Electrical closing via the BPFE pushbutton takes into account all the safety functions that are part of the control/monitoring system of the installation.
The BPFE connects to the closing release (XF) in place of the COM module.

Remote reset after fault trip

Electrical reset after fault trip (Res)
Following tripping, this function resets the "fault trip" indication contacts (SDE) and the mechanical indicator and enables circuit breaker closing.
Power supply: 110 / 130 V AC and $200 / 240$ V AC.

Automatic reset after fault trip (RAR)
Following tripping, a reset of the mechanical indicator (reset button) is no longer required to enable circuit-breaker closing. The mechanical (reset button) and electrical (SDE) indications remain in fault position until the reset button is pressed.

Remote operation
 Remote tripping

MX or MN voltage release.
This function opens the circuit breaker via an electrical order. It is made up of: - a shunt release (second MX)

■ or an undervoltage release (MN)
\square or a delayed undervoltage release (MN + delay unit).
These releases ($2^{\text {nd }} M X$ or $M N$) cannot be operated by the communication bus. The delay unit, installed outside the circuit breaker, may be disabled by an emergency OFF button to obtain instantaneous opening of the circuit breaker.

Wiring diagram for the remote-tripping function

Voltage releases (second MX)
When energised, the MX voltage release instantaneously opens the circuit breaker. A continuous supply of power to the second MX locks the circuit breaker in the OFF position.

Characteristics		
Power supply	V AC 50/60Hz	$24-48-100 / 130-200 / 250-277-380 / 480$
	V DC	$12-24 / 30-48 / 60-100 / 130-200 / 250$
Operating threshold	0.7 to 1.1 Un	
Permanent locking function	0.85 to 1.1 Un	
		Pick-up: $200(200 \mathrm{~ms})$
Consumption (VA or W)	$50 \mathrm{~ms} \pm 10$	Hold: 4.5
Circuit-breaker response time at Un		

Instantaneous voltage releases (MN)

The MN release instantaneously opens the circuit breaker when its supply voltage drops to a value between 35% and 70% of its rated voltage. If there is no supply on the release, it is impossible to close the circuit breaker, either manually or electrically. Any attempt to close the circuit breaker has no effect on the main contacts. Circuitbreaker closing is enabled again when the supply voltage of the release returns to 85 \% of its rated value.

Characteristics			
Power supply	V AC 50/60 Hz	$24-48-100 / 130-200 / 250-380 / 480$	
	V DC	$24 / 30-48 / 60-100 / 130-200 / 250$	
Operating threshold	Opening	0.35 to 0.7 Un	
	Closing	0.85 Un	Hold: 4.5
Consumption (VA or W)	Pick-up: $200(200 \mathrm{~ms})$	Hold: 4.5	
MN consumption	Pick-up: $200(200 \mathrm{~ms})$		
with delay unit (VA or W)			
Circuit-breaker response time at Un	$40 \mathrm{~ms} \pm 5$ for NT		
	$90 \mathrm{~ms} \pm 5$ for NW		

MN delay units

To eliminate circuit-breaker nuisance tripping during short voltage dips, operation of the MN release can be delayed. This function is achieved by adding an external delay unit in the MN voltage-release circuit. Two versions are available, adjustable and non-adjustable.

Characteristics			
Power supply	Non-adjustable	$100 / 130-200 / 250$	
V AC $50-60 \mathrm{~Hz} / \mathrm{DC}$	Adjustable	$48 / 60-100 / 130-200 / 250-380 / 480$	
Operating threshold	Opening	0.35 to 0.7 Un	
	Closing	0.85 Un	
Consommation du retardateur	Pick-up: 200 (200 ms)	Hold: 4.5	
Circuit-breaker response time at Un	Non-adjustable	0.25 s	
	Adjustable	$0.5 \mathrm{~s} \mathrm{-}-0.9 \mathrm{~s} \mathrm{-} \mathrm{1.5} \mathrm{~s} \mathrm{-} 3 \mathrm{~s}$	

Functions

Accessories

Auxiliary terminal shield (CB)

Optional equipment mounted on the chassis, the shield prevents access to the terminal block of the electrical auxiliaries.

Operation counter (CDM)
The operation counter sums the number of operating cycles and is visible on the front panel. It is compatible with manual and electrical control functions.

Escutcheon (CDP) with blanking plate.

Transparent cover (CP) for escutcheon.

Escutcheon (CDP)

Optional equipment mounted on the door of the cubicle, the escutcheon increases the degree of protection to IP 40 (circuit breaker installed free standing: IP30) . It is available in fixed and drawout versions.

Blanking plate (OP) for escutcheon

Used with the escutcheon, this option closes off the door cut-out of a cubicle not yet equipped with a device. It may be used with the escutcheon for both fixed and drawout devices.

Transparent cover (CP) for escutcheon

Optional equipment mounted on the escutcheon, the cover is hinged and secured by a screw. It increases the degree of protection to IP54, IK10. It adapts to drawout devices.

Source-changeover systems Presentation

Service sector:

- hospital operating rooms
- safety systems for tall buildings
- computer rooms (banks, insurance companies, etc.)
- lighting systems in shopping centres.

Industry:

- assembly lines
- propulsion systems on ships
- essential auxiliaries in thermal power stations...

Infrastructure:

■ port and railway installations

- runway lighting systems
- control systems for military installations...

Manual source-changeover systems

A manual source-changeover system is made up of:
■ 2 devices (for connecting rod systems) or 2 to 3 devices (for cable systems)
\square a connecting-rod or cable type mechanical interlocking system.

Remote-operated source-changeover systems

This is the most commonly employed system. No intervention by human operators is required. The switch from the normal to the replacement source is controlled electrically.
A remote-operated source-changeover system is made up of two or three circuit breakers or switch-disconnectors linked by:
■ an electrical interlocking system implemented in a number of manners ■ a mechanical interlocking system that protects against the consequences of an electrical malfunction and inhibits incorrect manual operation.

Automatic source-changeover systems

An automatic controller may be added to a remote-operated source-changeover system for automatic source control according to programmable operating modes. This solution provides optimal energy management:
\square switching to a replacement source depending on any external conditions

- management of power sources
- regulation
- emergency source replacement, etc.

A communications function for dialogue with a supervisor is available for the automatic controller.

Communication option

The communication option must not be used to control the opening or closing of source-changeover system circuit breakers. It should be used only to transmit measurement data or circuit-breaker status.
The eco COM option is perfectly suited to these equipments.

Electrical interlocking of two or three
devices is used to create a remote-operated
source-changeover system.
A basic mechanical interlocking system enhances the reliability of system operation.

Interlocking of two devices using cables.

Interlocking of two devices using cables

To ensure a continuous supply of power, certain electrical installations are connected to two power sources:
■ a normal source N

- a replacement source R which supplies the installation when source N is not available.
A source-changeover system switches between the two sources. The system may include an automatic controller which manages switching according to external conditions. A source-changeover system may comprise two or three circuit breakers or switch-disconnectors.
Interlocking of two devices using connecting rods
The two devices must be stack mounted.
This function requires:
\square an adaptation fixture on the right side of each device
■ a set of connecting rods with no-slip adjustments.
The complete interlock kit is supplied for assembly by the customer.
Maximum vertical distance between the fixing planes: 900 mm .

Combinations of Masterpact Normal and Replacement source devices

Devices to be interlocked		NT		NW	
		Fixed	Drawout	Fixed	Drawout
NT	Fixed	\square	-	-	-
	Drawout	-	\square	-	-
NW	Fixed	-	-	-	\square
	Drawout	-	-	-	■

Interlocking of two or three devices using cables

Using cables, the devices may be stack mounted or installed side-by-side.
Interlocking of two devices (Masterpact NT or NW)
This function requires:
■ an adaptation fixture on the right side of each device

- a set of cables with no-slip adjustments.

Maximum distance between the fixing planes (vertical or horizontal): 2000 mm with a radius greater or equal to 100 mm .
For cases requiring greater distances between fixing planes, please consult us.
Interlocking of three devices (only Masterpact NW)
This function requires:
■ an adaptation fixture (different for each type of interlocking) on the right side of each device
■ two or three sets of cables with no-slip adjustments.
Maximum distance between the fixing planes (vertical or horizontal): 1000 mm with a radius greater or equal to 100 mm .
For cases requiring greater distances between fixing planes, please consult us.

Installation

The complete interlock kit is supplied for assembly by the customer.

Combinations of Masterpact Normal and Replacement source devices

All combinations of Masterpact NT and NW devices may be used together in a source-changeover system. Interlocked devices may be fixed or drawout, three or four pole, with different ratings and sizes.

Source-changeover systems Electrical interlocking

Electrical interlocking is used with the mechanical interlocking system. It controls switching between sources. An automatic controller may be added to take into account information from the distribution system.

IVE unit.

Electrical interlocking requires an electrical control device.
This function can be implemented in one of two ways:
■ using the IVE electrical interlocking unit

- by an electrician using the electrical systems presented in the diagrams in the "Source-changeover systems" section of this catalogue.

Characteristics of the IVE unit

■ external connection terminal block:

- inputs: control of devices
\square outputs: status of the SDE contacts on the Normal and Replacement source devices
■ connector to the two Normal and Replacement source devices:
- inputs:
- status of the OF contacts on each device (ON or OFF)
- status of the SDE contacts on the Normal and Replacement source devices
- outputs: power supply for motor mechanisms
- control voltage:
- 24 to 250 V DC
- 48 to $415 \mathrm{~V} 50 / 60 \mathrm{~Hz}$
- 440 V 60 Hz .

The control voltage for the IVE electrical interlocking unit must be identical to that of the operating mechanism.

Necessary equipment

Each device must be equipped with:
■ a remote-operation system made up of:
\square MCH gear motor
\square MX or MN opening release
\square XF closing release
\square PF "ready to close" contact
■ an available OF contact
■ one to three CE connected-position contacts for drawout devices.

Types of mechanical interlocking	Possible combinations	Typical electrical diagrams	Diagram no.
2 devices			
	QN QR 0 0 1 0 0 1	■ electrical interlocking with lockout after fault: ■ automatic control with lockout after fault: - permanent replacement source (with IVE) - engine generator set (with IVE) - BA/UA controller (with IVE) ■ electrical interlocking with lockout after fault:	$\begin{aligned} & 51156904 \\ & 51156905 \\ & 51156903 \end{aligned}$
3 devices: 2 "Normal" sources and 1 "Replacement" source			
	QN1 QN2 QR 0 0 0 1 1 0 0 0 1	- electrical interlocking: - without lockout after fault - with lockout after fault	$\begin{aligned} & 51156906 \\ & 51156907 \end{aligned}$
3 devices: 2 "Normal" sources and 1 "Replacement" source with source selection			
	QN1 QN2 QR 0 0 0 1 0 0 0 0 1 1 1 0 0 1 0	■ automatic control with engine generator set: - without lockout after fault (with MN) - with lockout after fault (with MN)	$\begin{aligned} & 51156908 \\ & 51156909 \end{aligned}$
3 devices: 3 sources, only one device			
	QS1 QS2 QS3 0 0 0 1 0 0 0 1 0 0 0 1	- electrical interlocking: - without lockout after fault - with lockout after fault	$\begin{aligned} & 51156910 \\ & 51156911 \end{aligned}$
3 devices: 2 sources +1 coupling			
	QS1 QC QS2 0 0 0 1 0 1 1 1 0 0 1 1 1 0 0 0 0 1 (1) (1) possible by forcing operation	electrical interlocking: without lockout after fault with lockout after fault automatic control with lockout after fault	$\begin{aligned} & 51156912 \\ & 51156913 \\ & 51156914 \end{aligned}$

By combining a remote-operated sourcechangeover system with an integrated BA or UA automatic controller, it is possible to automatically control source transfer according to user-selected sequences. These controllers can be used on sourcechangeover systems comprising 2 circuit breakers.
For source-changeover systems comprising 3 circuit breakers, the automatic control diagram must be prepared by the installer as a complement to to diagrams provided in the "electrical diagrams" section of this catalogue.

BA controller.

UA controller.

Controller					BA	UA	
Compatible circuit breakers					All Compact NS and Masterpact circuit breakers		
4-position switch							
Automatic operation					-	\square	
Forced operation on "Normal" source					■	\square	
Forced operation on "Replacement" source					-	■	
Stop (both "Normal" and "Replacement" sources off)					\square	■	
Automatic operation							
Monitoring of the "Normal" source and automatic changeover					\square	■	
Generator set startup control					\square		
Generator set shutdown control					\square		
Load shedding and reconnection of non-priority circuits					\square		
Changeover to the "Replacement" source if one of the phases of the "Normal" phase is absent					-		
Test							
By opening the P25M circuit breaker supplying the controller					-		
By pressing the test button on the front of the controllerIndications					\square		
					Indications		
Circuit breaker status indication on the front of the controller: on, off, fault trip					■	■	
Automatic mode indicating contact					■	■	
Other functions							
Selection of type of "Normal" source (single-phase or three-phase)					■		
Voluntary transfer to "Replacement" source (e.g. energy management commands)					■	■	
During peak-tariff periods (energy management commands), forced operation on "Normal" source if "Replacement" source not operational						■	
Additional contact (not part of controller). Transfer to "Replacement" source only if contact is closed (e.g. used to test the frequency of UR).					■	-	
Setting of maximum startup time for the replacement source						\square	
Options							
Communication option					■		
Power supply							
Control voltages ${ }^{(1)}$		$\begin{aligned} & 220 \text { to } 240 \mathrm{~V} 50 / 60 \mathrm{~Hz} \\ & 380 \text { to } 415 \mathrm{~V} 50 / 60 \mathrm{~Hz} \\ & 440 \mathrm{~V} 60 \mathrm{~Hz} \end{aligned}$				$\begin{aligned} & ■ \\ & ■ \\ & \square \end{aligned}$	
Operating thresholds							
Phase failure Voltage presencevoltage		$\begin{aligned} & 0.35 U n \leqslant \text { voltage } \leqslant 0.7 U n \\ & 0.5 \text { Un } \leqslant \text { voltage } \leqslant 0.7 U n \\ & \text { voltage } \geqslant 0.85 \text { Un } \end{aligned}$			\square	\square	
Characteristics of output contacts							
Rated thermal current (A) 8 Minimum load 10		$\begin{aligned} & 8 \\ & 10 \mathrm{~mA} \text { at } 12 \mathrm{~V} \end{aligned}$					
		CA			AC15	DC	
Utilisation category (IEC 60947-5-1)		AC12	AC13	AC14		DC12	DC13
Operational current (A)	24 V	8	7	5	6	8	2
	48 V	8	7	5	5	2	-
	110 V	8	6	4	4	0.6	-
	220/240 V	8	6	4	3	-	-
	250 V	-	-	-	-	0.4	-
	380/415 V	5	-	-	-	-	-
	440 V	4	-	-	-	-	-
	660/690 V	-	-	-	-	-	-

(1) The controller is powered by the ACP auxiliaries control plate. The same voltage must be used for the ACP plate, the IVE unit and the circuit breaker motor mechanisms. If this voltage is the same as the source voltage, then the "Normal" and "Replacement" sources can be used directly for the power supply. If not, a BC type or equivalent isolation transformer must be used.

Functions
 and characteristics

Display modules

Perfectly integrated in the Compact

 and Masterpact ranges, Display modules are designed for use with Micrologic control units to provide instant and highly intuitive access to allthe information provided by the circuit breakers, including device status, current, voltage and power values, etc.

DMB300 display module: basic and harmonic measurements.

DMC300 display module: measurements, harmonic analysis, diagnosis.

Associated Micrologic control unit
A = Micrologic A
$P=$ Micrologic P
$\mathrm{H}=$ Micrologic H

DMB300 and DMC300 display modules use the power and communications capabilities of the Micrologic control units to centralise the display of electrical values, status conditions and alarms of one or more Compact or Masterpact circuit breakers.
The mounting and cabling system for the display modules ensures fast,
easy and reliable installation.
Start-up is immediate with no configuration or programming required.
Display modules are high-performance devices combining:
■ simple and easy-to-read dials

- powerful and accurate digital processing.

Their small size and extensive communications capabilities make for easy and flexible installation and operation.

Display modules	DMB300		DMC300		
Associated circuit breakers					
Type	Compact or Masterpact equipped with Micrologic control units				
Number	1 to 4		1 to 16		
Display					
Screen type	Black and white		Colour, touch screen		
Screen size	240×64 pixels		5 ", 320×240 pixels		
Entry	5 buttons		Touch screen		
Information displayed					
Currents (per phase)					
Currents I1, I2, I3, IN	AAA	P H	A	P	H
Maximum current		$\mathrm{P} \quad \mathrm{H}$		P	H
Earth-fault and earth-leakage currents		$\mathrm{P} \quad \mathrm{H}$	A	P	H
Demand current		P H		P	H
Maximum demand current		P		P	H
Total harmonic distortion (THD)					H
Maximum total harmonic distortion					H
Amplitudes of individual harmonics		H	H		
Voltages					
Phase-to-phase voltages ($\mathrm{U}_{1-2,2} \mathrm{U}_{2-3,}, \mathrm{U}_{3-1}$)		P H		P	H
Minimum/maximum phase-to-phase voltages		$\mathrm{P} \quad \mathrm{H}$		P	H
Phase-to-neutral voltages ($\mathrm{V}_{1-\mathrm{N}}, \mathrm{V}_{2-\mathrm{N},} \mathrm{V}_{3-\mathrm{N}}$)		P H		P	H
Minimum/maximum phase-to-neutral voltages				P	H
Frequency		P H		P	H
Voltage imbalance (\% per phase)		P H		P	H
Total harmonic distortion (\% per phase)		H			H
Maximum total harmonic distortion (\% per phase)		H			H
Amplitudes of individual harmonics		H			H
Power					
Active (P), reactive (Q) and apparent (S) power		H		P	H
Power factor and $\cos \varphi$		$\mathrm{P} \quad \mathrm{H}$		P	H
Maximum power (P, Q, S)		P H		P	H
Demand power (P, Q, S)		P H		P	H
Maximum demand power		P H		P	H
Metering					
Active, reactive and apparent energy		P H		P	H
On-line help					
	On-line help is available for each type of information supplied by the module				
Circuit-breaker diagnostics					
Identification of control units	A	P H	A	P	H
Reading of protections		P H	A	P	H
Circuit-breaker status		P H	A	P	H
Type of trip	A	P H	A	P	H
Current alarms		P H		P	H
Maintenance indicator				P	H
Installation diagnosis					
Indication of faulty devices			A	P	H
Fault log			A	P	H
Installation and start-up					
Mounting	Mounted through door, without tools, using 6 spring-clips supplied with the mod.				
Connection	Prefabricated wiring systems				

Wiring system

The wiring system is designed for low-voltage power switchboards. Installation requires no tools or special skills.
The prefabricated wiring ensures both data transmission (ModBus protocol) and 24 V DC power distribution for the display module and the communications modules on the Micrologic control units.

Masterpact circuit breakers equipped with Micrologic control units and the ModBus COM option.

Connection of DMB300 display module

Maximum distance between module and circuit breaker: 1200 m .

CDM 303:
Connection cable between display module and junction block.

CJB 306 junction block.

CCP 303:
Connection cable between Masterpact or Compact and junction block.

CCR 301:
Roll of RS 485 cable
(2 RS 485 wires +2 power supply wires).

CSD 309:
SubD 9-pin connector for colour-coded connection of wires to screw terminals.

Masterpact circuit breakers equipped with Micrologic control units and the ModBus eco COM option.
Presentation 6
Functions and characteristics 13
NT06 to NT16 circuit breakers 60
Fixed $3 / 4$-poles device 60
Drawout 3/4-poles device 64
NW08 to NW32 circuit breakers 68
Fixed 3/4-poles device 68
Drawout 3/4-poles device 70
NW40 circuit breakers 72
Fixed $3 / 4$-poles device 72
Drawout 3/4-poles device 74
NW40b to NW63 circuit breakers 76
Fixed 3/4-poles device 76
Drawout 3/4-poles device 78
NT/NW accessories 80
NT/NW external modules 82
Electrical diagrams 87
Installation recommendations 97
Additional characteristics 121
Catalogue numbers, spare parts and order form 127

NT06 to NT16 circuit breakers
 Fixed $3 / 4$-poles device

Dimensions

Bottom mounting (on base plate or rails)
Rear mounting detail
(on upright or backplate)

For voltages < 690 V

	Parts Insulated	Metal	Energised
A	0	0	100
\mathbf{B}	0	0	60

For 1000 V

	Parts Insulated	Metal	Energised
A	0	100	$500^{(3)}$
B	0	50	$100^{(3)}$

(3) With a minimum distance between bars of 65 mm (A and B) if the bars are

F : datum.
(1) Without escutcheon.
(2) With escutcheon. not insulated.
Note: X and Y are the symmetry planes for a 3-pole device.
$\boldsymbol{A}\left(^{*}\right)$ An overhead clearance of 50 mm is required to remove the arc chutes.
An overhead clearance of 20 mm is required to remove the terminal block.
NT06 to NT16 circuit breakers
Fixed 3/4-poles device

Vertical rear connection

Detail

Front connection
Detail

Top connection
Bottom connection

Note: recommended connection screws: M10 class 8.8.
Tightening torque: $\mathbf{5 0} \mathbf{N m}$ with contact washer.

Rear connection with spreaders
Detail

Spreader detail

Middle left or middle right spreader for 4P.

Middle spreader for 3P.

View A detail.

NT06 to NT16 circuit breakers
 Fixed 3/4-poles device

Connections
Front connection via vertical connection adapters

Detail

Front connection via vertical connection adapters fitted with cable-lug adapters
Detail

View A detail.

Dimensions and connection
 NT06 to NT16 circuit breakers
 Drawout 3/4-poles device

Dimensions

For voltages < 690 V or equal to 1000 V.

	Parts Insulated	Metal	Energised
\mathbf{A}	0	0	30
\mathbf{B}	10	10	60
\mathbf{C}	0	0	30

[^7]Note: X and Y are the symmetry planes for a 3-pole device.

Connections

Detail

Front connection
Detail

Note: recommended connection screws: M10 class 8.8.
Tightening torque: $\mathbf{5 0} \mathbf{N m}$ with contact washer.

Dimensions and connection

Connections

Front connection with spreaders

Spreader detail

Middle left or middle right spreader for 4P.

View A detail.

Middle spreader for 3P.

Left or right spreader for 4P.

Connections

Front connection via vertical connection adapters fitted with cable-lug adapters

View A detail.

Dimensions

Mounting on base plate or rails

Mounting detail

Safety clearances

Door cutout

: datum.
(1) Without escutcheon. (2) With escutcheon.

Note: X and Y are the symmetry planes for a 3-pole device.
$A\left(^{*}\right)$ An overhead clearance of 50 mm is required to remove the arc chutes.
An overhead clearance of 20 mm is required to remove the terminal block.

Vertical rear connection

Detail

View A detail.

Detail

View A detail.

Dimensions and connection

NW08 to NW32 circuit breakers
Drawout 3/4-poles device

Dimensions

Connections

Detail

Vertical rear connection

Detail

View A detail.

Mounting detail
Mounting detail

Safety clearances

Door cutout

	Insulated parts	Metal parts	Energised parts
A	0	0	100
\mathbf{B}	0	0	60

(1) Without escutcheon.
(2) With escutcheon.

Note: X and Y are the symmetry planes for a 3-pole device.
$A\left(^{*}\right)$ An overhead clearance of 110 mm is required to remove the arc chutes.
An overhead clearance of 20 mm is required to remove the terminal block.

NW40 circuit breakers
 Fixed 3/4-poles device

Connections

Horizontal rear connection

Detail

Vertical rear connection

Detail

Dimensions and connection

Dimensions

(*) Disconnected position.

Mounting detail

Door cutout

	Insulated parts	Metal parts	Energised parts
\mathbf{A}	0	0	0
\mathbf{B}	0	0	60

: datum.
(1) Without escutcheon. (2) With escutcheon.

Note: X and Y are the symmetry planes for a 3-pole device.
The safety clearances take into account the space required to remove the arc chutes.

Dimensions
 NW40 circuit breakers and connection

Connections

Horizontal rear connection

Detail

Vertical rear connection

Detail

Safety clearances

Door cutout

	Insulated parts	Metal parts	Energised parts
\mathbf{A}	0	0	100
\mathbf{B}	0	0	60

(F) : datum.
(1) Without escutcheon.
(2) With escutcheon.

Note: X and Y are the symmetry planes for a 3-pole device.
$\boldsymbol{A}\left(^{*}\right)$ An overhead clearance of 110 mm is required to remove the arc chutes.
An overhead clearance of 20 mm is required to remove the terminal block.

NW40b to NW63 circuit breakers Fixed 3/4-poles device

Vertical rear connection (NW40b - NW50)

Vertical rear connection (NW63)

Detail

View A detail.

Detail

View A detail.

Dimensions and connection

NW40b to NW63 circuit breakers
Drawout 3/4-poles device

Dimensions

(*) Disconnected position.

Mounting detail

Door cutout

	Insulated parts	Metal parts	Energised parts
\mathbf{A}	0	0	0
\mathbf{B}	0	0	60

(1) Without escutcheon.
(2) With escutcheon.
Note: X and Y are the symmetry planes for a 3-pole device.
F] : datum.

Dimensions
 NW40b to NW63 circuit breakers and connection
 Drawout 3/4-poles device

Connections

Horizontal rear connection (NW40b - NW50) Detail

Vertical rear connection (NW40b - NW50)
Detail

Vertical rear connection (NW63)
Detail

Mounting on backplate with special brackets (Masterpact NW08 to 32 fixed)

Disconnectable front-connection adapter (Masterpact NW08 to 32 fixed)

Dimensions

NT/NW accessories

Rear panel cutout (drawout devices)

NW08 to NW40
Rear view

NW40b to NW63
Rear view

Escutcheon
 Masterpact NT
 Fixed device

Drawout device

Masterpact NW

Fixed device

: datum.

Drawout device

Connection of auxilary wiring to terminal block

One conductor only per connection point.

M6C relay module

External power supply module (AD)

Battery module (BAT)
Mounting

Delay unit for MN release

MNR

"Chassis" communication module

ModBUS

External sensor for source ground return (SGR) protection

Sensor

"MGDF summer" module

External sensor for external neutral

Dimensions

400/1600 A (NT06 to NT16)

High: 137 mm.

1000/4000 A (NW025 to NW40)

High: 162 mm .

400/2000 A (NW08 to NW20)

High: 162 mm .
2000/6300 A (NW40b to NW63)

High: 168 mm .

Installation

400/1600 A (NT06 to NT16)
400/2000 A (NW08 to NW20)

1000/4000 A (NW025 to NW40)

2000/6300 A (NW40b to NW63)

2 identical external sensor shipped as loosed part.

Dimensions

NT/NW external modules and connection

Rectangular sensor for earth leakage protection (Vigi)

$280 \times 115 \mathrm{~mm}$ window

$470 \times 160 \mathrm{~mm}$ window

Busbars path
280×115 window
Busbars spaced 70 mm centre-to-centre

2 bars 50×10.
470×160 window
Busbars spaced 115 mm centre-to-centre

4 bars 100×5.

2 bars 100×5.

4 bars 125×5.

Dimensions

NT/NW external modules and connection

Installation and connection for Digipact DMB300

Dimensions and front-panel cut-out

Installation and connection for Digipact DMC300
Dimensions and front-panel cut-out

(*) With Digipact Modbus wiring system.

Presentation 6
Functions and characteristics 13
Dimensions and connection 59
Masterpact NT06 to NT16 88
Fixed and drawout devices 88
Masterpact NW08 to NW63 90
Fixed and drawout devices 90
Masterpact NT and NW 92
Communications option 24 V DC external power supply 92
Earth-fault and earth-leakage protection
Neutral protection
Zone selective interlocking 94
Installation recommendations 97
Additional characteristics 121
Catalogue numbers, spare parts and order form 127

The diagram is shown with circuits de-
energised, all devices open, connected and
charged and relays in normal position.

[^8]P : A + power meter + additional protection.
H: P + harmonics.

Indication contacts
OF4 / OF3 / OF2 / OF1 : ON/OFF indication contacts.
(*) Spring charging motor 440/480 V AC
(380 V motor + additional resistor).

Chassis contacts					
CD2	CD1	CE3	CE2	CE1	CT1
$\delta_{824}{ }^{\circ}$	$\delta_{814}{ }^{\circ}$	$\delta_{334}{ }^{\circ}$	$\mathrm{O}_{324}{ }^{\circ}$	O_{314}	$\mathrm{O}_{914} \mathrm{O}^{\circ}$
$\delta_{822}{ }^{\circ}$	δ_{812}	$\mathrm{O}_{332} \mathrm{O}$	O_{322}	O_{312}	$\mathrm{O}_{912} \mathrm{O}^{\circ}$
$\delta_{821}{ }^{\circ}$	$\delta_{811}{ }^{\circ}$	$\delta_{331}{ }^{\circ}$	$\delta_{321}{ }^{\circ}$	$\delta_{311}{ }^{\circ}$	$\delta_{911}{ }^{\circ}$

Chassis contacts
CD2: disconnected

CD1	position	CE2	position

Key:

\square	drawout device only.
$\boxed{X X X}$	SDE1, OF1, OF2, OF3, OF4 supplied as standard.
$\square \quad$interconnected connections (only one wire per connection point).	

The diagram is shown with circuits de-
energised, all devices open, connected and
charged and relays in normal position.

[^9]

OF24	OF23	OF22	OF21	OF14			
	${ }_{232}$			δ_{142}	2	${ }^{\circ}$	8
							$\mathrm{O}_{111}{ }^{\circ}$
EF24	23	EF22	EF21	EF14	EF13	EF12	EF1
248	238	228	218	148	138	δ_{128}	118
246	${ }_{236}$	${ }_{226}$	216	146	136	δ_{126}	116
${ }_{245}^{\circ}$	${ }_{235}$	${ }_{225}$	215	145	135	${ }_{125}$	$\bigcirc_{115}{ }^{\circ}$

Indication contacts		
OF4: ON/OFF indication contacts	OF24 or	Combined
OF3		EF24

Chassis contacts				
CD3	disconnected CE3	connected	CT3	test position
CD2	position	CE2	position	CT2
contacts				
CD1	contacts	CE1	contacts	CT1

Key:

\square drawout device only.

$X X$	SDE1, OF1, OF2, OF3, OF4 supplied as standard.

interconnected connections (only one wire per connection point).

Connection of the communications option

None of the control-unit protection functions require an auxiliary source. However, the 24 V DC external power-supply (AD module) is required for certain operating configurations as indicated in the table below.

Circuit breaker	Closed Voltage measurement inputs Powered	Open Powered M2C, M6C programmable contacts option	Yes

(1) Drawout device equipped with Modbus chassis COM.
(2) Drawout device equipped with Digipact chassis COM.
(3) Except for Micrologic A control units (if current < 20% In).
(4) Except for Micrologic A control units.
(5) Time setting is manual and can be carried out automatically by the supervisor via the communications bus.

The communications bus requires its own 24 V DC power source (E1, E2). This source is not the same as the 24 V DC external power-supply module (F1-, F2+).
In case of using the 24 V DC external power supply (AD module), maximum cable length between $24 V D C$ (G1, G2) and the control unit (F1-, F2+) must not exceed 10 meters.
The BAT battery module, mounted in series upstream of the AD module, ensures an uninterrupted supply of power if the AD module power supply fails.
The voltage measurement inputs are standard equipment on the downstream connectors of the circuit breaker.
External connections are possible using the PTE external voltage measurement input option. With this option, the internal voltage measurement inputs are disconnected and terminals VN, V1, V2, V3 are connected only to the control unit (Micrologic P and H only). The PTE option is required for voltages less than 220 V and greater than 690 V (in which case a voltage transformer is compulsory). For three-pole devices, the system is supplied with terminal VN connected only to the control unit (Micrologic P and H).
When the PTE option is implemented, the voltage measurement input must be protected against short-circuits. Installed as close as possible to the busbars, this protection function is ensured by a P25M circuit breaker (1 A rating) with an auxiliary contact (cat. no. 21104 and 21117). This voltage measurement input is reserved exclusively for the control unit and must not ever be used to supply other circuits outside the switchboard. external power supply

Examples using the COM communications option

Switchboard display unit

This architecture provides remote display of the variables managed by Micrologic control units equipped with the eco COM Modbus module.

- I (Micrologic A)
- I, U, P, E (Micrologic P)

■ I, U, P, E, THD (Micrologic H)
No programming is required.
For Micrologic A control unit (if current < $20 \% \mathrm{In}$), it is recommended to use the 24 V DC external power supply (AD module).

Communicating switchboard

This configuration provides remote display and control of Masterpacts equipped with the Modbus or Digipact COM module. The Digipact bus can be combined with the Modbus bus

External sensor (CT) for residual earth-fault protection

Connection of current-transformer secondary circuit for external neutral
Masterpact equipped with a Micrologic 6 A/P/H:
■ shielded cable with 2 twisted pairs

- T1 twisted with T2
- T3 twisted with T4
- shielding connected to GND on one end only
- maximum length 10 meters
- cable cross-sectional area 0.4 to $1.5 \mathrm{~mm}^{2}$

■ recommended cable: Belden 9552 or equivalent.
If supply is via the top, follow the shematics.
If supply is via the bottom, control wiring is identical; for the power wiring, H 1 is connected to the source side, H 2 to the load side.
For four-pole versions, for residual earth-fault protection, the current transformer for the external neutral is not necessary.
If the 2000/6300 current transformer is used:
■ signals T1 and T2 must be wired in series

- signals T3 and T4 must be wired in parallel.

Connection for signal VN is required only for power measurements ($3 \varnothing, 4$ wires, 4 CTs).

External transformer for source ground return (SGR) earth-fault protection

Connection of the secondary circuit
Masterpact equipped with a Micrologic 6 A/P/H:
■ unshielded cable with 1 twisted pair

- maximum length 150 meters

■ cable cross-sectional area 0.4 to $1.5 \mathrm{~mm}^{2}$

- terminals 5 and 6 may not be used at the same time

■ use terminal 5 for NW08 to 40

- use terminal 6 for NW40b to 63
- recommended cable: Belden 9409 or equivalent.

Earth-leakage protection

Connection of the rectangular-sensor secondary circuit
Use the cable shipped with the rectangular sensor.

Neutral protection

■ three pole circuit breaker:
\square Masterpact equipped with Micrologic P or H \square the current transformer for external neutral is necessary (the wiring diagram is identical to the one used for the residual earth-fault protection)
\square four pole circuit breaker:

- Masterpact equipped with Micrologic A, P or H \square the current transformer for external neutral is not necessary.

Zone selective interlocking

Zone-selective interlocking is used to reduce the
electrodynamic forces exerted on the installation by shortening the time required to clear faults, while maintaining time discrimination between the various devices.
A pilot wire interconnects a number of circuit breakers equipped with Micrologic A/P/H control units, as illustrated in the diagram above.
The control unit detecting a fault sends a signal upstream and checks for a signal arriving from downstream. If there is a signal from downstream, the circuit breaker remains closed for the full duration of its tripping delay. If there is no signal from downstream, the circuit breaker opens immediately, regardless of the tripping-delay setting.

Fault 1.

Only circuit breaker A detects the fault. Because it receives no signal from downstream, it opens immediately, regardless of its tripping delay set to 0.3.

Fault 2.

Circuit breakers A and B detect the fault. Circuit breaker A receives a signal from B and remains closed for the full duration of its tripping delay set
to 0.3. Circuit breaker B does not receive a signal from downstream and opens immediately, in spite of its tripping delay set to 0.2 . upstream circuit breakers.

Presentation 6
Functions and characteristics 13
Dimensions and connection 59
Electrical diagrams 87
Operating conditions 98
Installation in switchboard 100
Door interlock catch 102
Control wiring 103
Power connection 104
Recommended busbars drilling 106
Masterpact NT06 to NT16 106
Masterpact NW08 to NW63 107
Busbar sizing 108
Temperature derating Power dissipation and input / output resistance 110
Derating in switchboards 111
Substitution kit 118
Fixed / drawout devices 800 to 3200 A 118
Additional characteristics 121
Catalogue numbers, spare parts and order for 127

Ambient temperature

Masterpact devices can operate under the following temperature conditions:
\square the electrical and mechanical characteristics are stipulated for an ambient
temperature of $-5^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

- circuit-breaker closing is guaranteed down to $-35^{\circ} \mathrm{C}$.

Storage conditions are as follows:
■ -40 to $+85^{\circ} \mathrm{C}$ for a Masterpact device without its control unit

- $-25^{\circ} \mathrm{C}$ to $+85{ }^{\circ} \mathrm{C}$ for the control unit.

Extreme atmospheric conditions

Masterpact devices have successfully passed the tests defined by the following standards for extreme atmospheric conditions:
■ IEC 68-2-1: dry cold at $-55^{\circ} \mathrm{C}$

- IEC 68-2-2: dry heat at $+85^{\circ} \mathrm{C}$

■ IEC 68-2-30: damp heat (temperature $+55^{\circ} \mathrm{C}$, relative humidity 95%)
■ IEC 68-2-52 level 2: salt mist.
Masterpact devices can operate in the industrial environments defined by standard IEC 947 (pollution degree up to 4).
It is nonetheless advised to check that the devices are installed in suitably cooled switchboards without excessive dust.

Vibrations

Masterpact devices are guaranteed against electromagnetic or mechanical vibrations.
Tests are carried out in compliance with standard IEC 68-2-6 for the levels required by merchant-marine inspection organisations (Veritas, Lloyd's, etc.):
■ 2 to 13.2 Hz : amplitude $\pm 1 \mathrm{~mm}$
■ 13.2 to 100 Hz : constant acceleration 0.7 g .
Excessive vibration may cause tripping, breaks in connections or damage to mechanical parts.

Altitude

At altitudes higher than 2000 metres, the modifications in the ambient air (electrical resistance, cooling capacity) lower the following characteristics as follows:

Altitude (m)	2000	3000	4000	5000
Dielectric resistance voltage (V)	3500	3150	2500	2100
Average insulation level (V)	1000	900	700	600
Maximum utilisation voltage (V)	690	590	520	460
Average thermal current (A) at $40^{\circ} \mathrm{C}$	$1 \times \ln$	$0.99 \times \ln$	$0.96 \times \ln$	$0.94 \times \mathrm{In}$

Electromagnetic disturbances

Masterpact devices are protected against:
■ overvoltages caused by devices that generate electromagnetic disturbances
■ overvoltages caused by atmospheric disturbances or by a distribution-system
outage (e.g. failure of a lighting system)

- devices emitting radio waves (radios, walkie-talkies, radar, etc.)

■ electrostatic discharges produced by users.
Masterpact devices have successfully passed the electromagnetic-compatibility tests (EMC) defined by the following international standards:
■ IEC 60947-2, appendix F

- IEC 60947-2, appendix B (trip units with earth-leakage function).

The above tests guarantee that:
■ no nuisance tripping occurs

- tripping times are respected.

Possible positions

Power supply

Masterpact devices can be supplied either from the top or from the bottom without reduction in performance, in order to facilitate connection when installed in a switchboard.

Mounting the circuit-breaker

It is important to distribute the weight of the device uniformily over a rigid mounting surface such as rails or a base plate.
This mounting plane should be perfectly flat (tolerance on support flatness: 2 mm). This eliminates any risk of deformation which could interfere with correct operation of the circuit breaker.
Masterpact devices can also be mounted on a vertical plane using the special brackets.

Mounting on rails.

Mounting with vertical brackets.

Partitions

Sufficient openings must be provided in partitions to ensure good air circulation around the circuit breaker; Any partition between upstream and downstream connections of the device must be made of nonmagnetic material.
For high currents, of 2500 A and upwards, the metal supports or barriers in the immediate vicinity of a conductor must be made of non-magnetic material \mathbf{A}. Metal barriers through which a conductor passes must not form a magnetic loop.

Busbars (NT, NW)

The mechanical connection must be exclude the possibility of formation of a magnetic loop around a conductor.

Busbars (NT)

For live busbars installed immediately above the circuit breaker (respecting the 100 mm safety clearance), the distance between bars must be 65 mm minimum. In a 1000 V system, the bars must be insulated.

Interphase barrier

If the insulation distance between phases is not sufficient ($\leqslant 14 \mathrm{~mm}$), it is advised to install phase barriers (taking into account the safety clearances). Mandatory for a Masterpact NT > 500 V .

Door interlock

Mounted on the right or left-hand side of the chassis, this device inhibits opening of the cubicle door when the circuit breaker is in "connected" or "test" position. It the breaker is put in the "connected" position with the door open, the door may be closed without having to disconnect the circuit breaker.

Dimensions (mm)		
Type	(1)	(2)
NT08-16 (3P) 135 168 NT08-16 (4P) 205 168 NW08-40 (3P) 215 215 NW08-40 (4P) 330 215 NW4Ob-63 (3P) 660 215 NW4Ob-63 (4P) 775 215		

Dimensions (mm)

Type	(1)	(2)
NT	5	23
NW	83	103

Cable-type door interlock

This option prevents door opening when the circuit breaker is closed and prevents circuit breaker closing when the door is open.
For this, a special plate associated with a lock and a cable is mounted on the right side of the circuit breaker. With this interlock installed, the source changeover function cannot be implemented.

Note: the door interlock can either be mounted on the right side or the left side of the breaker.

[^10]

Breaker in "connected" or "test" position
Door cannot be opened

喜
$\|$

|| P

Wiring of voltage releases

During pick-up, the power consumed is approximately 150 to 200 VA. For low control voltages ($12,24,48 \mathrm{~V}$), maximum cable lengths are imposed by the voltage and the cross-sectional area of cables.
Recommended maximum cable lengths (meter).

		$\begin{array}{ll} 12 \mathrm{~V} & \\ 2,5 \mathrm{~mm}^{2} & 1,5 \mathrm{~mm}^{2} \end{array}$		$\begin{aligned} & 24 \mathrm{~V} \\ & 2,5 \mathrm{~mm}^{2} \end{aligned}$	$1,5 \mathrm{~mm}^{2}$				
		$\begin{aligned} & 48 \mathrm{~V} \\ & 2,5 \mathrm{~mm}^{2} \end{aligned}$	1,5 mm ${ }^{2}$						
MN	U source 100 \%			-	-	58	35	280	165
	U source 85%	-	-	16	10	75	45		
MX-XF	U source 100 \%	21	12	115	70	550	330		
	U source 85 \%	10	6	75	44	350	210		

Note: the indicated length is that of each of the two wires.

24 V DC power-supply module

External 24 V DC power-supply module for Micrologic (F1-, F2+)
\square do not connect the positive terminal (F2+) to earth

- the negative terminal (F1-) can be connected to earth, except in IT systems - a number of Micrologic control units and M6C modules can be connected to the same 24 V DC power supply (the consumption of a Micrologic control unit or an M6C module is approximately 100 mA)
■ do not connect any devices other than a Micrologic control unit or an M6C module ■ the maximum length for each conductor is ten metres. For greater distances, it is advised to twist the supply wires together
- the 24 V DC supply wires must cross the power cables perpendicularly. If this is difficult, it is advised to twist the supply wires together
■ the technical characteristics of the external 24 V DC power-supply module for Micrologic control units are indicated on page 207E2200_Ver6.0.fm/12

Communication bus

■ do not connect the positive terminal (E1) to earth

- the negative terminal (E2) can be connected to earth

■ a number of "device" or "chassis" communication modules can be connected to the same 24 V DC power supply (the consumption of each module is approximately 30 mA)
■ the 24 V DC (E1, E2) power supply for the communication bus must be separate from the external 24 V DC power-supply module for Micrologic control units (F1-, F2+).

E1	E2	E3	E4	E5	E6
+	-	$A / T x$	$B / T x^{+}$	$A^{\prime} / R x$	$B^{\prime} / R x^{+}$

To create a two-wire Modbus communication bus, simply connect Tx- with Rx^{-}and $T x^{+}$with Rx^{+}
To connect a Modbus slave (Micrologic) to a Modbus master (PLC), connect:
the slave Tx^{-}to the master Rx^{-}the slave Rx^{-}to the master Tx^{-}
the slave Tx^{+}to the master Rx^{+}the slave Rx^{+}to the master Tx^{+}.

RS485 Modbus Junction Block

Pins	Signal
1	0 V
2	24 V
3	NC
4	$\mathrm{~B}^{\prime} / \mathrm{Rx}^{+}$
5	$\mathrm{~B} / \mathrm{Tx}^{+}$
6	0 V
7	24 V
8	$\mathrm{~A}^{\prime} / \mathrm{Rx}^{-}$
9	$\mathrm{~A} / \mathrm{Tx}$

Color
Black
Red

Blue
Yellow
Black
Red
White
Brown

Cables connections

If cables are used for the power connections, make sure that they do not apply excessive mechanical forces to the circuit breaker terminals.
For this, make the connections as follows:
■ extend the circuit breaker terminals using short bars designed and installed according to the recommendations for bar-type power connections: \square for a single cable, use solution B opposite

- for multiple cables, use solution \mathbf{C} opposite

■ in all cases, follow the general rules for connections to busbars:

- position the cable lugs before inserting the bolts
\square the cables should firmly secured to the framework \mathbf{E}.

Busbars connections

The busbars should be suitably adjusted to ensure that the connection points are positioned on the terminals before the bolts are inserted \mathbf{B}
The connections are held by the support which is solidly fixed to the framework of the switchboard, such that the circuit breaker terminals do not have to support its weight \mathbf{C}. (This support should be placed close to the terminals).

Electrodynamic stresses

The first busbar support or spacer shall be situated within a maximum distance from the connection point of the breaker (see table below). This distance must be respected so that the connection can withstand the electrodynamic stresses between phases in the event of a short circuit.
Maximum distance \mathbf{A} between busbar to circuit breaker connection and the first busbar support or spacer with respect to the value of the prospective short-circuit current.

Isc (kA)	30	50	65	80	100	150
Distance A (mm)	350	300	250	150	150	150

1 Terminal screw factory-tightened to 16 Nm (NW), 13 Nm (NT).
2 Breaker terminal.
3 Busbar.
4 Bolt.
5 Washer.
6 Nut.

Clamping

Correct clamping of busbars depends amongst other things, on the tightening torques used for the nuts and bolts. Over-tightening may have the same consequences as under-tightening.
For connecting busbars (Cu ETP-NFA51-100) to the circuit breaker, the tightening torques to be used are shown in the table below.
These values are for use with copper busbars and steel nuts and bolts, class 8.8. The same torques can be used with AGS-T52 quality aluminium bars (French standard NFA 02-104 or American National Standard H-35-1).

Examples

Busbar drilling

Examples

Isolation distance

Dimensions (mm)

Ui	$\mathbf{X ~ m i n}$
600 V	8 mm
1000 V	14 mm

Busbar bending

When bending busbars maintain the radius indicated below(a smaller radius would cause cracks).

Dimensions (mm)

e	Radius of curvature \mathbf{r} Min	Recommended
5	5	7.5
10	15	18 to 20

Recommended busbars drilling Masterpact NT06 to NT16

Rear connection Rear connection with spreaders

Middle left or middle right spreader for 4P

Middle spreader for 3P

Left or right spreader for 4P

Left or right spreader for 3P

Vertical rear connection

Front connection

Bottom connection

Front connection via vertical connection adapters

Installation recommendations

Recommended busbars drilling Masterpact NW08 to NW63

Horizontal rear connection NW08 to NW32

NW40b to NW50

Vertical rear connection NW08 to NW32, NW40b to NW50

Front connection NW08 to NW32

Top connection

Bottom connection

Basis of tables:

■ maximum permissible busbars temperature: $100^{\circ} \mathrm{C}$
■ Ti: temperature around the circuit breaker and its
connection
■ busbar material is unpainted copper.

Front or rear horizontal connection

Masterpact	Maximum service current	$\mathrm{Ti}: 40^{\circ} \mathrm{C}$ No. of 5 mm thick bars	No. of 10 mm thick bars	$\mathrm{Ti}: 50^{\circ} \mathrm{C}$ No. of 5 mm thick bars	No. of 10 mm thick bars	$\mathrm{Ti}: 60^{\circ} \mathrm{C}$ No. of 5 mm thick bars	No. of 10 mm thick bars
NT06	400	$2 \mathrm{~b} .30 \times 5$	$1 \mathrm{~b} .30 \times 10$	$2 \mathrm{~b} .30 \times 5$	$1 \mathrm{~b} .30 \times 10$	$2 \mathrm{~b} .30 \times 5$	$1 \mathrm{~b} .30 \times 10$
NT06	630	$2 \mathrm{~b} .40 \times 5$	$1 \mathrm{~b} .40 \times 10$	$2 \mathrm{~b} .40 \times 5$	$1 \mathrm{~b} .40 \times 10$	$2 \mathrm{~b} .40 \times 5$	$1 \mathrm{~b} .40 \times 10$
NT08 ou NW08	800	$2 \mathrm{~b} .50 \times 5$	$1 \mathrm{~b} .50 \times 10$	$2 \mathrm{~b} .50 \times 5$	$1 \mathrm{~b} .50 \times 10$	$2 \mathrm{~b} .50 \times 5$	$1 \mathrm{~b} .63 \times 10$
NT10 ou NW10	1000	$3 \mathrm{~b} .50 \times 5$	$1 \mathrm{~b} .63 \times 10$	$3 \mathrm{~b} .50 \times 5$	$2 \mathrm{~b} .50 \times 10$	$3 \mathrm{~b} .63 \times 5$	$2 \mathrm{~b} .50 \times 10$
NT12 ou NW12	1250	$3 \mathrm{~b} .50 \times 5$	$2 \mathrm{~b} .40 \times 10$	$3 \mathrm{~b} .50 \times 5$	$2 \mathrm{~b} .50 \times 10$	$3 \mathrm{~b} .63 \times 5$	$2 \mathrm{~b} .50 \times 10$
		$2 \mathrm{~b} .80 \times 5$	$2 \mathrm{~b} .40 \times 10$	$2 \mathrm{~b} .80 \times 5$			
NT16 ou NW16	1400	$2 \mathrm{~b} .80 \times 5$	$2 \mathrm{~b} .40 \times 10$	$2 \mathrm{~b} .80 \times 5$	$2 \mathrm{~b} .50 \times 10$	$3 \mathrm{~b} .80 \times 5$	$2 \mathrm{~b} .63 \times 10$
NT16 ou NW16	1600	$3 \mathrm{~b} .80 \times 5$	$2 \mathrm{~b} .63 \times 10$	$3 \mathrm{~b} .80 \times 5$	$2 \mathrm{~b} .63 \times 10$	$3 \mathrm{~b} .80 \times 5$	$3 \mathrm{~b} .50 \times 10$
NW20	1800	$3 \mathrm{~b} .80 \times 5$	$2 \mathrm{~b} .63 \times 10$	$3 \mathrm{~b} .80 \times 5$	$2 \mathrm{~b} .63 \times 10$	3b. 100×5	$2 \mathrm{~b} .80 \times 10$
NW20	2000	$3 \mathrm{~b} .100 \times 5$	$2 \mathrm{~b} .80 \times 10$	$3 \mathrm{~b} .100 \times 5$	$2 \mathrm{~b} .80 \times 10$	$3 \mathrm{~b} .100 \times 5$	$3 \mathrm{~b} .63 \times 10$
NW25	2200	$3 \mathrm{~b} .100 \times 5$	$2 \mathrm{~b} .80 \times 10$	$3 \mathrm{~b} .100 \times 5$	$2 \mathrm{~b} .80 \times 10$	$4 \mathrm{~b} .80 \times 5$	$2 \mathrm{~b} .100 \times 10$
NW25	2500	4b. 100×5	2b. 100×10	4b. 100×5	$2 \mathrm{~b} .100 \times 10$	$4 \mathrm{~b} .100 \times 5$	$3 \mathrm{~b} .80 \times 10$
NW32	2800	4b. 100×5	$3 \mathrm{~b} .80 \times 10$	$4 \mathrm{~b} .100 \times 5$	$3 \mathrm{~b} .80 \times 10$	$5 \mathrm{~b} .100 \times 5$	$3 \mathrm{~b} .100 \times 10$
NW32	3000	$5 \mathrm{~b} .100 \times 5$	$3 \mathrm{~b} .80 \times 10$	$6 \mathrm{~b} .100 \times 5$	$3 \mathrm{~b} .100 \times 10$	$8 \mathrm{~b} .100 \times 5$	$4 \mathrm{~b} .80 \times 10$
NW32	3200	$6 \mathrm{~b} .100 \times 5$	$3 \mathrm{~b} .100 \times 10$	$8 \mathrm{~b} .100 \times 5$	$3 \mathrm{~b} .100 \times 10$		4b. 100×10
NW40	3800		$4 \mathrm{~b} .100 \times 10$		$5 \mathrm{~b} .100 \times 10$		$5 \mathrm{~b} .100 \times 10$
NW40	4000		$5 \mathrm{~b} .100 \times 10$		$5 \mathrm{~b} .100 \times 10$		$6 \mathrm{~b} .100 \times 10$
NW50	4500		$6 \mathrm{~b} .100 \times 10$		$6 \mathrm{~b} .100 \times 10$		$7 \mathrm{~b} .100 \times 10$
NW50	5000		7b. 100×10		7b. 100×10		

With Masterpact NT, it is recommanded to use 50 mm wideness bars (see "Recommended busbars drilling").

Example

Conditions:

- drawout version
\square horizontal busbars
- $\mathrm{T}_{\mathrm{i}}: 50^{\circ} \mathrm{C}$

■ service current: 1800 A.

Solution:

For $\mathrm{T}_{\mathrm{i}}=50^{\circ} \mathrm{C}$, use an NW20 which can be connected with three $80 \times 5 \mathrm{~mm}$ bars or two $63 \times 10 \mathrm{~mm}$ bars.

Basis of tables:
■ maximum permissible busbars temperature: $100^{\circ} \mathrm{C}$
■ Ti: temperature around the circuit breaker and its
connection
\square busbar material is unpainted copper.

Rear vertical connection

Masterpact	Maximum service current	$\mathrm{Ti}: 40^{\circ} \mathrm{C}$ No. of 5 mm thick bars	No. of 10 mm thick bars	$\mathrm{Ti}: 50^{\circ} \mathrm{C}$ No. of 5 mm thick bars	No. of 10 mm thick bars	$\mathrm{Ti}: 60^{\circ} \mathrm{C}$ No. of 5 mm thick bars	No. of 10 mm thick bars
NT06	400	$2 \mathrm{~b} .30 \times 5$	$1 \mathrm{~b} .30 \times 10$	$2 \mathrm{~b} .30 \times 5$	$1 \mathrm{~b} .30 \times 10$	$2 \mathrm{~b} .30 \times 5$	$1 \mathrm{~b} .30 \times 10$
NT06	630	$2 \mathrm{~b} .40 \times 5$	$1 \mathrm{~b} .40 \times 10$	$2 \mathrm{~b} .40 \times 5$	$1 \mathrm{~b} .40 \times 10$	$2 \mathrm{~b} .40 \times 5$	$1 \mathrm{~b} .40 \times 10$
NT08 ou NW08	800	$2 \mathrm{~b} .50 \times 5$	1b. 50×10	$2 \mathrm{~b} .50 \times 5$	$1 \mathrm{~b} .50 \times 10$	$2 \mathrm{~b} .50 \times 5$	1b. 50×10
NT10 ou NW10	1000	$2 \mathrm{~b} .50 \times 5$	$1 \mathrm{~b} .50 \times 10$	$2 \mathrm{~b} .50 \times 5$	1b. 50×10	$2 \mathrm{~b} .63 \times 5$	1b. 63×10
NT12 ou NW12	1250	$2 \mathrm{~b} .63 \times 5$	$1 \mathrm{~b} .63 \times 10$	$3 \mathrm{~b} .50 \times 5$	$2 \mathrm{~b} .40 \times 10$	$3 \mathrm{~b} .50 \times 5$	$2 \mathrm{~b} .40 \times 10$
NT16 ou NW16	1400	$2 \mathrm{~b} .80 \times 5$	1b. 80×10	$2 \mathrm{~b} .80 \times 5$	$2 \mathrm{~b} .50 \times 10$	$3 \mathrm{~b} .63 \times 5$	$2 \mathrm{~b} .50 \times 10$
NT16 ou NW16	1600	$3 \mathrm{~b} .63 \times 5$	$2 \mathrm{~b} .50 \times 10$	$3 \mathrm{~b} .63 \times 5$	$2 \mathrm{~b} .50 \times 10$	$3 \mathrm{~b} .80 \times 5$	$2 \mathrm{~b} .63 \times 10$
NW20	1800	$2 \mathrm{~b} .80 \times 5$	1b. 80×10	$2 \mathrm{~b} .80 \times 5$	$2 \mathrm{~b} .50 \times 10$	$3 \mathrm{~b} .80 \times 5$	$2 \mathrm{~b} .63 \times 10$
NW20	2000	$2 \mathrm{~b} .100 \times 5$	$2 \mathrm{~b} .63 \times 10$	2b. 100×5	$2 \mathrm{~b} .63 \times 10$	$3 \mathrm{~b} .100 \times 5$	$2 \mathrm{~b} .80 \times 10$
NW25	2200	2b. 100×5	$2 \mathrm{~b} .63 \times 10$	2b. 100×5	$2 \mathrm{~b} .63 \times 10$	3b. 100×5	2b. 80×10
NW25	2500	$4 \mathrm{~b} .80 \times 5$	$2 \mathrm{~b} .80 \times 10$	$4 \mathrm{~b} .80 \times 5$	$2 \mathrm{~b} .80 \times 10$	4b. 100×5	$3 \mathrm{~b} .80 \times 10$
NW32	2800	4b. 100×5	$2 \mathrm{~b} .100 \times 10$	4b. 100×5	$2 \mathrm{~b} .100 \times 10$	4b. 100×5	3b. 80×10
NW32	3000	5b. 100×5	3b. 80×10	$6 \mathrm{~b} .100 \times 5$	$3 \mathrm{~b} .100 \times 10$	5b. 100×5	4b. 80×10
NW32	3200	$6 \mathrm{~b} .100 \times 5$	$3 \mathrm{~b} .100 \times 10$	$6 \mathrm{~b} .100 \times 5$	$3 \mathrm{~b} .100 \times 10$		$4 \mathrm{~b} .100 \times 10$
NW40	3800		$4 \mathrm{~b} .100 \times 10$		$4 \mathrm{~b} .100 \times 10$		$4 \mathrm{~b} .100 \times 10$
NW40	4000		$4 \mathrm{~b} .100 \times 10$		$4 \mathrm{~b} .100 \times 10$		$4 \mathrm{~b} .100 \times 10$
NW50	4500		$5 \mathrm{~b} .100 \times 10$		$5 \mathrm{~b} .100 \times 10$		$6 \mathrm{~b} .100 \times 10$
NW50	5000		$5 \mathrm{~b} .100 \times 10$		$6 \mathrm{~b} .100 \times 10$		$7 \mathrm{~b} .100 \times 10$
NW63	5700		$7 \mathrm{~b} .100 \times 10$		$7 \mathrm{~b} .100 \times 10$		$8 \mathrm{~b} .100 \times 10$
NW63	6300		$8 \mathrm{~b} .100 \times 10$		$8 \mathrm{~b} .100 \times 10$		

Example

Conditions:

- drawout version
- vertical connections
- $\mathrm{T}_{\mathrm{i}}: 40^{\circ} \mathrm{C}$

■ service current: 1100 A .

Solution :

For $\mathrm{T}_{\mathrm{i}}=40^{\circ} \mathrm{C}$ use an NT12 or NW12 which can be connected with two $63 \times 5 \mathrm{~mm}$ bars or with one $63 \times 10 \mathrm{~mm}$ bar.

Temperature derating

The table below indicates the maximum current rating, for each connection type, as a function of Ti around the circuit breaker and the busbars.
Circuit breakers with mixed connections have the same derating as horizontally connected breakers.
For Ti greater than $60^{\circ} \mathrm{C}$, consult us.
Ti: temperature around the circuit breaker and its
connection.

Version	Drawout										Fixed										
Connection	Front or rear horizontal					Rear vertical					Front or rear horizontal						Rear vertical				
Temp. Ti	40	45	50	55	60	40	45	50	55	60	40		45	50	55	60	40	45	50	55	60
NT06 H1/L1	630					630						630					630				
NT08 H1/L1	800					800						800					800				
NT10 H1/L1	1000					1000						1000					1000				
NT12 H1	1250					1250						1250					1250				
NT16 H1	1600		1520	1480	1430	1600			1560	1510		1600				1550	1600				
NW08 N/H/L	800					800						800					800				
NW10 N/H/L	1000					1000						1000					1000				
NW12 N/H/L	1250					1250						1250					1250				
NW16 N/H/L	1600					1600						1600					1600				
NW20 H1/H2/H3	2000			1980	1890	2000						2000				1920	2000				
NW20 L1	2000		1900	1850	1800	2000						-	-	-	-	-	-	-	-	-	-
NW25 H1/H2/H3	2500					2500						2500					2500				
NW32 H1/H2/H3	3200		3100	3000	2900	3200						3200					3200				
NW40 H1/H2/H3	4000		3900	3750	3650	4000				3850		4000			3900	3800	4000				
NW40b H1/H2	4000					4000						4000					4000				
NW50 H1/H2	5000					5000						5000					5000				
NW63 H1/H2	-	-	-	-	-	6300				6200	-		-	-	-	-	6300				

Power dissipation and input / output

resistance

Total power dissipation is the value measured at $I_{N}, 50 /$
60 Hz , for a 3 pole or 4 pole breaker (values above the power $P=3 R I^{2}$).
The resistance between input / output is the value
measured per pole (cold state).

Version	Drawout		Fixed	
	Power dissipation (Watts)	Input/output resistance ($\mu \mathrm{ohm}$)	Power dissipation (Watts)	Input/output resistance ($\mu \mathrm{ohm}$)
NT06 H1/L1	55/115 (H1/L1)	38/72	30/45	26/39
NT08 H1/L1	90/140 (H1/L1)	38/72	50/80	26/39
NT10 H1/L1	150/230 (H1/L1)	38/72	80/110	26/39
NT12 H1	250	36	130	26
NT16 H1	460	36	220	26
NW08 N1	137	42	62	19
NW08 H/L	100	30	42	13
NW10 N1	220	42	100	19
NW10 H/L	150	30	70	13
NW12 N1	330	42	150	19
NW12 H/L	230	27	100	13
NW16 N1	480	37	220	19
NW16 H/L	390	27	170	13
NW20 H/L	470	27	250	13
NW25 H1/H2/H3	600	19	260	8
NW32 H1/H2/H3	670	13	420	8
NW40 H1/H2/H3	900	11	650	8
NW40b H1/H2	550	7	390	5
NW50 H1/H2	950	7	660	5
NW63 H1/H2	1200	7	1050	5

Installation

Derating in switchboards

recommendations

Factors affecting switchboard design

The temperature around the circuit breaker and its connections:
This is used to define the type of circuit breaker to be used and its connection arrangement.
Vents at the top and bottom of the cubicles:
Vents considerably reduce the temperature inside the switchboard, but must be designed so as to respect the degree of protection provided by the enclosure. For weatherproof heavy-duty cubicles, a forced ventilation system may be required.
The heat dissipated by the devices installed in the switchboard:
This is the heat dissipated by the circuit breakers under normal conditions (service current).
The size of the enclosure:
This determines the volume for cooling calculations.
Switchboard installation mode:
Free-standing, against a wall, etc.
Horizontal partitions:
Partitions can obstruct air circulation within the enclosure.

Basis of tables

■ switchboard dimensions
■ number of circuit-breakers installed

- type of breaker connections

■ drawout versions
■ ambient temperature outside of the switchboard: T_{a} (IEC 60439-1).

Masterpact NT06-16 H1/L1 (switchboard $2000 \times 400 \times 400$)

Derating in switchboards

Installation

Derating in switchboards

Disjoncteurs Masterpact NT10-16 H1/L1 (switchboard $2300 \times 1100 \times 500$)

Derating in switchboards

Installation

Derating in switchboards

Derating in switchboards

Note: the values indicated in these tables have been extrapolated from test data and theoretical calculations. These tables are only intended as a guide and cannot replace industrial experience or a temperature rise test.

Fixed / drawout devices

 800 to 3200 AIt is possible to replace a Masterpact (M08 to M32) with a new Masterpact (NW08 to NW32) with the same power rating.
Substitution is possible for the following types of circuit breakers:
■ N1, H1, H2 for both fixed and drawout versions
■ L1 for drawout versions up to 2000 A.

Fixing points are identical for Masterpact (M08 to M32) and Masterpact (NW08 to NW32), except for the four-pole chassis.
Door cut-out
■ without an escutcheon, the cut-out is identical $(270 \times 325 \mathrm{~mm})$
with the former escutcheon, the cut-out is identical $(270 \times 325 \mathrm{~mm})$

Fixed version

Drawout version

Raccordement de puissance

Select a set of retrofit connectors to replace the standard connectors and avoid any modifications to the busbars (see the retrofit section in "orders and quotations").

Note:

(1) Without escutcheon.
(2) With escutcheon.

References \boldsymbol{X} and \boldsymbol{Y} represent the symmetry planes for threepole devices.

Installation
recommendations

Substitution kit
Fixed / drawout devices 800 to 3200 A

Electrical diagrams

Correspondences between Masterpact NW and Masterpact M terminal blocks.

Indication contacts
Chassis contacts

Presentation 6
Functions and characteristics 13
Dimensions and connection 59
Electrical diagrams 87
Installation recommendations 97
Tripping curves 122
Limitation curves 124
Current limiting 124
Energy limiting 125
Catalogue numbers, spare parts and order form 127

Additional

 characteristics
Tripping curves

Micrologic 2.0

Micrologic 5.0, 6.0, 7.0

Additional characteristics

Tripping curves

Earth fault protection (Micrologic 6.0)

IDMTL curve (Micrologic P and H)

Additional characteristics
 Limitation curves Current limiting

Voltage 380/415/440 V AC

Limited short-circuit current (kÂ peak)

Voltage $660 / 690$ V AC

Limited short-circuit current (kÂ peak)

Limitation curves Energy limiting

Voltage 380/415/440 V AC

Limited energy

Voltage 660/690 V AC

Limited energy

Catalogue numbers, spare parts and order form

Presentation 6
Functions and characteristics 13
Dimensions and connection 59
Electrical diagrams 87
Installation recommendations 97
Additional characteristics 121
Communication bus accessories and Display Modules 128
Retrofit solutions 129
Connection for fixed devices 129
Connection for drawout devices 130
Masterpact NT 131
Connection 131
Micrologic control unit, communication option 132
Remote operation 133
Chassis locking and accessories 134
Clusters 135
Circuit breaker locking and accessories 136
Mechanical interlocking for source changeover 137
Indication contacts 138
Instructions 139
Masterpact NW 140
Connection 140
Micrologic control unit, communication option 141
Remote operation 142
Chassis locking and accessories 143
Clusters 144
Circuit breaker locking and accessories 145
Mechanical interlocking for source changeover 146
Indication contacts 147
Instructions 148
Masterpact NT and NW order form 149

Communication bus accessories and Display Modules

External 24 V DC power-supply module

External 24 V DC power-supply module

	Input	24/30 V DC	54440	
		$48 / 60 \mathrm{~V}$ DC	54441	
		100/125 V DC	54442	
		110/130 V AC	54443	
		200/240 V AC	54444	
		$380 / 415$ V AC	54445	
Converter				
	RS485/RS232 (ACE909) 12 V DC power supply included		59648	
	RS485/RS232		TSX SCA72	(1)
	RS485/Ethernet		174 CEV 300-20	(1)
	RS485/Ethernet (SMS compatible)		EGX 200/400	(2)

Micro Power Server MPS100

To replace a Masterpact M with a Masterpact NW, order a retrofit device (without connections) and select a set of connectors corresponding to the replaced device.
The Masterpact NW is installed in exactly the same place as the old Masterpact M device, without any modifications required on the switchboard.

Horizontal rear connection				
Device to be replaced		Connection to be ordered		
Masterpact M08 to M12				
Type N1/NI				
		3P		4P
Top 3	3 x	48951	4 x	48951
Bottom 3	3 x	48964	4 x	48964
Type H1/H2/HI/HF				
Top 3	3 x	48954	4 x	48954
Bottom 3	3 x	48965	4 x	48965
Masterpact M16				
Type N1/N1/H1/H2/HI/HF				
Top 3	3 x	48954	4 x	48954
Bottom 3x	3 x	48965	4 x	48965
Masterpact M20 and M25				
Type N1/N1/H1/H2/HI/HF				
Top 3	3 x	48957	4 x	48957
Bottom 3	3 x	48958	4 x	48958
Masterpact M32				
Type H1/H2/HI/HF				
Top 1	1 x	48962	1 x	48960
Bottom 1	1 x	48961	1 x	48960

To replace a Masterpact M with a Masterpact NW, order a retrofit device (without connections) and select a set of connectors corresponding to the replaced device.
The Masterpact NW is installed in exactly the same place as the old Masterpact M device, without any modifications required on the switchboard.

Vertical rear connection				
Device to be replaced		Connection to be ordered		
Masterpact M08 to M12				
Type N1/NI				
		3P		4P
Top 3	3 x	48966	4 x	48966
Bottom 3	3 x	48966	4 x	48966
Type H1/H2/HI/HF				
Top $3 \times$	3 x	48969	4 x	48969
Bottom 3	3 x	48969	4 x	48969
Masterpact M16				
Type N1/NI/H1/H2/HI/HF				
Top $3 \times$	3 x	48969	4 x	48969
Bottom $3 \times$	3 x	48969	$4 \times$	48969
Masterpact M20 and M25				
Type N1/NI/H1/H2/HI/HF				
Top $3 \times$	3 x	48970	4 x	48970
Bottom 3	3 x	48970	$4 \times$	48970
Masterpact M32				
Type H1/H2/HI/HF				
Top $1 \times$	1 x	48974	1 x	48978
Bottom $1 \times$	1 x	48974	1 x	48978

Horizontal rear connection

Device to be replaced		Connection to be ordered		
Masterpact M08 to M12				
Type N1/NI				
		3P		4P
Top	3 x	48951	4 x	48951
Bottom	3 x	48964	4 x	48964
Type H1/H2/HI/HF				
Top	3 x	48954	4 x	48954
Bottom	3 x	48965	4 x	48965
Masterpact M16				
Type N1/N1/H1/H2/HI/HF				
Top	3 x	48954	4 x	48954
Bottom	3 x	48965	4 x	48965
Masterpact M20 and M25				
Type N1/N1/H1/H2/HI/HF				
Top	3 x	48957	4 x	48957
Bottom	3 x	48958	4 x	48958
Masterpact M32 neutral on left-hand side				
Type H1/H2/HI/HF				
Top	1 x	48973	1 x	48976
Bottom	1 x	48973	1 x	48977
Masterpact M32 neutral on right-hand side				
Type H1/H2/HI/HF				
Top	1 x	48973	1 x	48977
Bottom	1 x	48973	1 x	48976

Catalogue numbers：
Masterpact NT spare parts
（＊）Installation manual must be ordered separatly，
it is not supply with the component

	Installation manual	47102	
Rear connection（vertical or horizontal mounting）／Replacement kit（3 or 4 parts）			
P	630／1600 A	33584	33585
Vert．mounting．Horiz．mounting．Installation manual		47102	
Drawout circuit breakers			
Front connection／Replacement kit（6 or 8 parts）			
20 Top and bottom	630／1600 A	33588	33589

Top and bottom
630／1600 A
33588
33589

通 1 迤	Installation manual			
			47102	
Rear connection（vertical or horizontal mounting）／Replacement kit（3 or 4 parts）				
		630／1600 A	33586	33587

Vert．mounting．Horiz．mounting．Installation manual	47102

Vert．mounting．Horiz．mounting．Installation manual	47102	
Connection accessories		
	3P	4P
Vertical connection adapters 630／1600 A／Replacement kit（3 or 4 parts）		
For For fixed and drawout front－connected circuit breakers	33642	33643
要 Ind Installation manual	47102	
Cable lug adapters 630／1600 A／Replacement kit（3 or 4 parts）		
For fixed and drawout front－connected circuit breakers	33644	33645
Installation manual 47102		
Spreaders／Replacement kit（3 or 4 parts）		
For fixed and drawout front and rear－connected circuit breakers	33622	33623
Installation manual	47102	
ement kit（3 or 4 parts）		
For fixed and drawout front and rear－connected circuit breakers	33648	33648
For drawout rear－connected circuit breakers	33768	33768
㐍 Installation manual	47102	
Arc chute screen（1 part）		
For fixed front－connected circuit breakers	47335	47336
47102 Installation manual 47103		

Catalogue numbers:
spare parts

Masterpact NT
Micrologic control unit, communication option
(*) Installation manual must be ordered separatly, it is not supply with the component

Replacement parts for Micrologic control units
Long-time rating plug (limits setting range for higher accuracy) / 1 part

总	Standard	0.4 at 1 x lr	33542
	Low-setting option	0.4 at $0.8 \times \mathrm{lr}$	33543
	High-setting option	0.8 at $1 \times \mathrm{lr}$	33544
	Without long-time p		33545
	Installation manual		33075
Battery + cover			
	Battery (1 part)		33593
	Cover (1 part)	For Micrologic A	33592
		For Micrologic P and H	47067

Installation manual	33075

Communication option

Chassis

Source ground return (SGR) earth-fault protection / 1 part

	External sensor (SGR)		33579	
	MDGF summing module		48891	
Rectangular sensor for earth-leakage protection + Vigi cable / 1 part				
R	$280 \mathrm{~mm} \times 115 \mathrm{~mm}$		33573	
Vigi cable or external voltage cable / 1 part				
	Vigi cable or external voltage cable (1 part)		47090	
External power supply module / 1 part				
		24-30 V DC	54440	
		48-60 V DC	54441	
		100-125 V DC	54442	
		110-130 V AC	54443	
		200-240 V AC	54444	
		$380-415$ V AC	54445	
Battery module / 1 part				
	1 battery	24 V DC	54446	
Test equipments / 1 part				
	Mini test kit		33594	
	Portable test kit		33595	
	Wiring kit or mini test kit or portable test kit		33590	
	2 pin test cable		S48908	(*)

[^11](*) Installation manual must be ordered separatly,
it is not supply with the component

Catalogue numbers:
spare parts

Masterpact NT
Chassis locking and accessories
(*) Installation manual must be ordered separatly,
it is not supply with the component

Chassis locking

"Disconnected" position locking / 1 part

	Installation manual	47104
Racking interlock / 1 part	Racking interlock (VPOC)	33788

Racking interlock (VPOC)
33788

Installation manual	47104

Installation manual	47104
Breaker mismatch protection / 1 part	
Breaker mismatch protection (VDC)	33767

Breaker mismatch protection (VDC)
| 33767

Chassis accessories
Auxiliary terminal shield (CB) / 1 part

$\begin{aligned} & \stackrel{\otimes}{\circ} \\ & \stackrel{\circ}{\circ} \end{aligned}$	Terminal shield	3P	33763
		4P	33764
	Installation manual		47104
Safety shutters + locking / 1 part			
	Safety shutters (VO)	3 P	33765
		4P	33766
	Installation manual Nota : the locking of safety shutters is integrated.		47104

Catalogue numbers:
spare parts

Masterpact NT
Clusters

Clusters

| | Grease for disconnecting contact clusters $(1 \mathrm{~kg})$ | $\mathbf{5 4 1 2 2}$ |
| :--- | :--- | :--- | :--- |
| 1 disconnecting contact cluster for chassis (see table below) 1 part | $\mathbf{3 3 1 6 6}$ | |

Table : number of clusters required for the different chassis models

Chassis rating (A)	Masterpact NT	
	3P	$\mathbf{4 P}$
	12	18
630	12	18
800	12	18
1000	12	18
1250	18	24
1600		

Nota : the minimum order is 6 parts.
Racking handle / 1 part
Racking handle
47098

Catalogue numbers:
spare parts

Masterpact NT
 Circuit breaker locking and accessories

(*) Installation manual must be ordered separatly,
it is not supply with the component

Circuit breaker locking

Pushbutton locking device / 1 part

	By padlocks		33897
	Installation manual		47103
OFF position locking / 1 part			
	By padlocks + BPFE support		
			47514
	By keylocks + BPFE support		
	Profalux	1 lock	47519
		1 lock + 1 lock with same key profile	47520
	1 identical keylock Profalux with the same key:		
		key: random not identified combination	33173
		key: random identified 215470 combination	33174
		key: random identified 215471 combination	33175
	Ronis	1 lock	47521
		1 lock + 1 lock with same key profile	47522
	1 identical keylock Ronis with	the same key :	
		key: random not identified combination	33189
		key: random identified EL24135 combination	33190
		key: random identified EL24153 combination	33191
		key: random identified EL24315 combination	33192
	Locking kit without locks for	Profalux	47515
		Ronis	47516
		Kirk	47517
		Castell	47518
	Installation manual		47103

Other circuit breaker accessories
Mechanical operation counter / 1 part

Catalogue numbers:
 Masterpact NT
 spare parts
 Mechanical interlocking for source changeover

Interlocking using cables ${ }^{(1)}$
Choose 2 adaptation fixtures (1 for each breaker) +1 set of cables

1 adaptation fixture for Masterpact NT fixed devices	33200
1 adaptation fixture for Masterpact NT drawout devices	33201
1 set of 2 cables	33209

(1) Can be used with any combination of NT or NW, fixed or drawout devices.

Cable-type door interlock

(*) Installation manual must be ordered separatly,
it is not supply with the component

Indication contacts

ON/OFF indication contacts (OF) / 1 part

	Changeover contacts (6 A - 240 V)		47076
	1 low-level OF to replace 1 standard OF (4 max.)		47077
	Wiring	For fixed circuit breaker	47074
		For drawout circuit breaker	33098
	Installa		47103
"Fault trip" indication contacts (SDE) / 1 part			
	1 additional SDE (5 A - 240 V)		47078
	1 additional low-level SDE		47079
	Wiring	For fixed circuit breaker	47074
		For drawout circuit breaker	33098
	Installa		47103

"Ready to close" contact (1 max.) / 1 part

Electrical closing pushbutton / 1 part

| | | BPFE |
| :--- | :--- | :--- | :--- |
| 1 pushbutton | 47512 | |
| Installation manual | 47103 | |

Carriage switches (connected / disconnected / test position) / 1 part

Changeover contacts (6A-240 V)

1 connected position contact (3 max.)	33170

1 test position contact (1 max.)	33170

1 disconnected position contact (2 max.)	33170

And/or low-level changeover contacts
1 connected position contact (3 max.)
33171

1 test position contact (1 max.)	33171
max.)	33171

1 disconnected position contact (2 max.)	33171

Auxiliary terminals for chassis alone

	3 wire terminal (1 part), terminal block (1 part)	33098
	Jumpers (10 parts)	47900
穹 通	Installation manual	47104

Catalogue numbers:
spare parts

Instructions	
Chassis accessories	47104
Circuit breaker accessories	47103
Fixed and drawout circuit breaker	47102
Micrologic user manual $20 / 50$ (French)	33076
$20 / 50$ (English)	33077
2A / 7A (French)	33079
2A / 7A (English)	33080
5P / 7P (French)	33082
5P / 7P (English)	33083
5H / 7H (French)	33085
5H / 7H (English)	33086
NT user manual French	47106
English	47107
Modbus communication notice for manual	33088
Micrologic accessories replacement guide	33075

Catalogue numbers:
Masterpact NW
spare parts
(*) Installation manual must be ordered separatly,
it is not supply with the component

Catalogue numbers: spare parts

Masterpact NW
Micrologic control unit, communication option
(*) Installation manual must be ordered separatly, it is not supply with the component

Replacement parts for Micrologic control units
Long-time rating plug (limits setting range for higher accuracy) / 1 part

	Standard	0.4 at $1 \times \mathrm{lr}$	33542
	Low-setting option	0.4 at $0.8 \times \mathrm{lr}$	33543
	High-setting option	0.8 at $1 \times \mathrm{lr}$	33544
	Without long-time p		33545
	Installation manual		33075
Battery + cover			
	Battery (1 part)		33593
		For Micrologic A	33592
		For Micrologic P and H	47067

Installation manual	33075

Communication option

Chassis

	Modbus COM		33852
	Digipact COM		33855
	6 wires terminal drawout (1 part)		47850
	6 wires terminal fixed (1 part)		47075
	Installation manual		33088
External sensors			
External sensor for earth-fault protection (TCE) / 1 part			
	Sensor rating	400/2000 A	34035
₹-		1000/4000 A	34036
-10:		$4000 / 6300 \mathrm{~A}$	48182

Source ground return (SGR) earth-fault protection / 1 part
External sensor (SGR)

MDGF summing module

Rectangular sensor for earth-leakage protection + Vigi cable / 1 part

[^12]Catalogue numbers:
spare parts

Masterpact NW
Remote operation
(*) Installation manual must be ordered separatly,
it is not supply with the component

Remote operation

MCH (1 part)

Fixed. Drawout.
Undervoltage release MN

Installation manual	47951

Undervoltage release (1 part)

Installation manual	47951

MN delay unit (1 part)

		R (non-adjustable)	Rr (adjustable)
AC $50 / 60 \mathrm{~Hz}$		33680	
DC	$48-60 \mathrm{~V}$	33684	33681
	$100-130 \mathrm{~V}$	33685	33682
Installation manual	$300-250 \mathrm{~V}$	33683	

Catalogue numbers:
spare parts

Masterpact NW
Chassis locking and accessories
(*) Installation manual must be ordered separatly,
it is not supply with the component

Chassis locking

"Disconnected" position locking / 1 part

	By padlocks		
			Standard
	By keylocks		
	Profalux	1 lock	48568
		1 lock + 1 lock with same key profile	48569
		2 locks (different key profiles)	48570
	1 identical keylock Profalux with the same key:		
		key: random not identified combination	33173
		key: random identified 215470 combination	33174
		key: random identified 215471 combination	33175
	Ronis	1 lock	48572
		1 lock + 1 lock with same key profile	48573
		2 locks (different key profiles)	48574
	1 identical keylock Ronis with the same key :		
		key: random not identified combination	33189
		key: random identified EL24135 combination	33190
		key: random identified EL24153 combination	33191
		key: random identified EL24315 combination	33192
	Locking kit without locks for	Profalux, Ronis	48564
		Castell	48565
		Kirk	48566
	Installation manual		47952
Door interlock / 1 part			
	$\underline{\text { Right and left-hand side of ch }}$	hassis (VPECD or VPECG)	47914

$\xrightarrow{+}$	Installation manual	47952
Racking interlock		
	5 parts	48582
	Installation manual	47952
Breaker mismatch protection / 1 part		
(Breaker mismatch protection (VDC)	33767

Installation manual	47952

Chassis accessories
Auxiliary terminal shield (CB) / 1 part

	800/4000 A	3P		48595
		4P		48596
	$4000 \mathrm{~b} / 6300 \mathrm{~A}$	3P		48597
		4P		48598
	Installation manual			47952
Safety shutters + locking block / 1 part				
	800/4000 A	3 P		48721
		4P		48723
	4000b/6300 A	3P		48722
		4P		48724
	Installation manual			47952
Shutter locking block (for replacement) / 1 part				
毞	2 parts for 800/4000 A			48591
	Installation manual			47952
Earthing kit for chassis				
			3P	4P
Types for N1/H1/NA/HA				
			48433	48434

Catalogue numbers:
spare parts

Masterpact NW
Clusters
(*) Installation manual must be ordered separatly, it is not supply with the component

Clusters

Grease for disconnecting contact clusters (1 kg)
1 disconnecting contact cluster for chassis (see table below) (part 1)

$$
54122
$$

Table : number of clusters required for the different chassis models

Chassis rating (A)	Masterpact NW 3P				Masterpact NW 4P			
	N1	H1/H2	H3	L1	N1	H1/H2	H3	L1
630								
800	6	12		24	8	16		32
1000	6	12		24	8	16		32
1250	6	12		24	8	16		32
1600	12	12		24	16	16		32
2000		24	24	42		32	32	56
2500		24	24			32	32	
3200		36	36			48	48	
4000		42	42			56	56	
4000b		72				96		
5000		72				96		
6300		72				96		

Nota : the minimum order is 6 parts.

Racking handle

 accessories
(*) Installation manual must be ordered separatly,
it is not supply with the component

1 part

By padlocks

Installation manual	47951

OFF position locking / 1 part

By padlocks / 1 part

By padlocks and keylocks / 1 part	$\mathbf{4 8 5 3 0}$
Profalux	$\frac{1 \text { lock }}{1 \text { lock + 1 lock with same key profile }}$
$\frac{2 \text { locks (different key profiles) }}{}$	48545
1 in	48547

1 identical keylock Profalux with the same key:

	key: random not identified combination	33173
	key: random identified 215470 combination	33174
	key: random identified 215471 combination	33175
Ronis	1 lock	48549
	1 lock + 1 lock with same key profile	48550
	2 locks (different key profiles)	48551
1 identical keylock Ronis with the same key:		
	key: random not identified combination	33189
	key: random identified EL24135 combination	33190
	key: random identified EL24153 combination	33191
	key: random identified EL24315 combination	33192
Locking kit without locks for	Profalux, Ronis	48541
	Kirk	48542
	Castell	48543
Installation manual		47951

Other circuit breaker accessories
Mechanical operation counter / 1 part

Operation counter CDM
48535

Installation manual	47951

	Front cover	47939
	Installation manual	47951
Spring charging handle / 1 part		
\cdots	Spring charging handle	47940

	Spring charging handle			47940	
(2)	Installation manual				47951
Arc chute for Masterpact NW / 1 part					
			3P		4P
	Type N1	3 x	47935	4 x	47935
	Type H1/H2 (NW08 to NW40)	3 x	47935	$4 \times$	47935
	Type H1/H2 (NW40b to NW63)	$6 \times$	47936	8 x	47936
	Type H3	3 x	47936	4 x	47936
	Type L1	3 x	47937	4 x	47937
	Type NW DC	3 x	47934	4 x	47934
	Installation manual				47951

(*) Installation manual must be ordered separatly,
it is not supply with the component

Interlocking of 2 devices using cables ${ }^{(1)}$
Choose 2 adaptation sets (1 for each device +1 set of cables)

1 adaptation fixture for Masterpact NW fixed devices	47926
1 adaptation fixture for Masterpact NW drawout devices	47926
1 set of 2 cables	33209

(1) Can be used with any combination of NT or NW, fixed or drawout devices.

Interlocking of 3 devices using cables
Choose 3 adaptation (inclusing 3 adaptation fixtures + cables)
3 sources, ony 1 dice cos

2 sources +1 coupling, fixed or drawout devices	48609

2 normal + 1 replacement source, fixed or drawout devices	48608

Cable-type door interlock
1 complete assembly for Masterpact NW fixed or drawout device

Combined closed / connected contacts for use with 1 auxiliary contact / 1 part

Catalogue numbers:
spare parts

Masterpact NW Instructions

Instructions		
Chassis accessories		47952
Circuit breaker accessories		47951
Fixed and drawout circuit breaker		47950
User manual	NW AC (French)	47954
	NW AC (English)	47955
	NW DC (French)	47957
	NW DC (English)	47958
Micrologic user manual	$20 / 50$ (French)	33076
	$20 / 50$ (English)	33077
	2A / 7A (French)	33079
	2A / 7A (English)	33080
	5P / 7P (French)	33082
	5P / 7P (English)	33083
	$5 \mathrm{H} / 7 \mathrm{H}$ (French)	33085
	$5 \mathrm{H} / 7 \mathrm{H}$ (English)	33086
Modbus communication notice for manual		33088
Micrologic accessories replacement guide		33075

Indication contacts			
OF - ON/OFF indication contacts			
Standard	4 OF 6 A-240 V AC (10 A-240 V AC and low-level for NW)		
Alternate	1 OF low-level for NT	Max. 4	qty
Additional	1 block of 4 OF for NW	Max. 2	qty
EF - combined "connected/closed" contacts			
	1 EF 6 A-240 V AC for NW	Max. 8	qty
	1 EF low-level for NW	Max. 8	qty

SDE - "fault-trip" indication contact

Locking

VBP - ON/OFF pushbutton locking (by transparent cover + padlocks)
OFF position locking:

VCPO - by padlocks			
VSPO - by keylocks	Keyock kit (w/o keylock)	Profalux	Ronis
	1 keylock	Profalux	Ronis
	2 identical keylocks, 1 key	Profalux	Ronis
	2 keylocks, different keys (NW)	Profalux	Ronis

Chassis locking in "disconnected" position:

Accessories

VO - safety shutters on chassis for NT and NW
CDM - mechanical operation counter NT, NW
CB - auxiliary terminal shield for chassis NT, NW
$\overline{C C}$ - arc chute cover for fixed NT
CDP - escutcheon NT, NW
CP - transparent cover for escutcheon NT, NW
$\overline{\text { OP - blanking plate for escutcheon NT, NW }}$

Brackets for mounting	NW fixed	On backplates		
Test kits	Mini test kit		Portable test kit	

[^0]: (1) Except 4000 A .

[^1]: Note: Micrologic P control units come with a non-transparent lead-seal cover as standard.

[^2]: Portable test kit.

[^3]: Short Message Service (SMS).

[^4]: OFF position locking using a keylock.

[^5]: Mismatch protection

[^6]: (s)

[^7]: (F) : datum.
 (1) Without escutcheon.
 (2) With escutcheon.

[^8]: A : digital ammeter.

[^9]: A : digital ammeter.
 $\boldsymbol{P}: A+$ power meter + additional protection.
 H: P + harmonics.

[^10]: (F) : datum.

[^11]: (*) Consult us

[^12]: (*) Consult us.

